

Quasi-Cyclic Short Packet (QCSP) transmission for Internet of Things

Kassem SAIED

Université de Bretagne Sud, Lorient, France LabSTICC, UMR CNRS 6285

March 25th, 2022

Ph.D. defense in front of the jury members:

- Reporters:Giuseppe DURISI, Professor, Institut National des Sciences Appliquées (INSA), Lyon, FranceJean-Marie GORCE, Professor, Chalmers University of Technology, Gothenburg, Sweden
- Examiners: Ghaya Rekaya-Ben OTHMAN, Professor, Telecom Paris, Institut Polytechnique de Paris Jean-Baptiste DORE, Engineer, CEA, Laboratoire d'électronique des technologies de l'information Benoit GELLER, Professor, ENSTA, Institut Polytechnique de Paris
- Thesis directors:Emmanuel BOUTILLON, Professor, LabSTICC, Université de Bretagne Sud (UBS)Ali Al GHOUWAYEL, Associate Professor, École d'Ingénieurs du Numérique, EFREI Paris

General context

Detection

Synchronization

QCSP performance

Conclusion and Perspectives

Wireless Sensor Networks (WSN)

> IoT becoming an increasingly growing topic of conversation

- > WSN is a key enabler for the IoT technologies
- Transmitters are often idle
- Low Power Wide Area (LPWA) networks
- Low latency, high reliability, low SNRs
- Short data packets

General context

Detection

Synchronization

QCSP performance

Conclusion and Perspectives

Wireless Sensor Networks (WSN)

> IoT becoming an increasingly growing topic of conversation

- > WSN is a key enabler for the IoT technologies
- Transmitters are often idle
- Low Power Wide Area (LPWA) networks
- Low latency, high reliability, low SNRs
- Short data packets

Detection and Synchronization Metadata Payload data Metadata Data "In a network, asynchronism (even with short packets) shouldn't affect capacity [Ref1]." Y. Polyanskiy (MIT)

[Ref1]: Polyanskiy, Y., Asynchronous Communication: Exact Synchronization, Universality, and Dispersion, IEEE Transactions on Information Theory 59, 1256–1270 (Mar. 2013).

From space to earth

General	context
000	00

System model

Detection

Synchronization

QCSP performance

GNU Radio

Conclusion and Perspectives

- Cyclic-Code Shift Keying (CCSK) used in Quasi-Zenith Satellite system (Japanese GPS enhancement system) -2020- [Ref2].
- Non-binary error correcting codes (NB-ECC) used in BeiDou (Chinese GPS-like system) -2017- [Ref3].

→ Space to earth comm. techniques are efficient at very low data rate and low SNRs → adapt to IoT?!

[Ref 2]: "Quasi-Zenith Satellite System Interface Specification - Centimeter Level Augmented Service (IS-QZSS-L6-003)" Cabinet Office, August, 2020.

[Ref 3]: BeiDou Navigation Satellite System, Signal In Space, Interface Control Document, Open Service Signals B1C (Version 1.0) " China Satellite Navigation Office , December, 2017.

General context

00000

Detection

Synchronization

QCSP performance

Conclusion and

Perspectives

From space to earth

- Cyclic-Code Shift Keying (CCSK) used in Quasi-Zenith Satellite system (Japanese GPS enhancement system) -2020- [Ref2].
 - Non-binary error correcting codes (NB-ECC) used in BeiDou (Chinese GPS-like system) -2017- [Ref3].

→ Space to earth comm. techniques are efficient at very low data rate and low SNRs → adapt to IoT?!

[Ref 3]: BeiDou Navigation Satellite System, Signal In Space, Interface Control Document, Open Service Signals B1C (Version 1.0) " China Satellite Navigation Office , December, 2017.

Previous work

In finite block regime:

System model

General context

00000

Detection

Synchronization

QCSP performance

GNU Radio

Conclusion and Perspectives

- Good theoretical understanding that describes the rate vs. error probability trade-off in the short-packets transmission.
- Most of the coding schemes are developed under the assumption of genius-aided detection and synchronization.
- > But in real life, genius belongs to a fairy tale ...

Problem of packet detection and synchronization should be tackled

Finite-block

regime

Objective

General context Objective 00000 Contributing to the evolution of IoT networks. Detection + synchronization + \succ Developing blind detection and self-synchronization algorithms for payload + redundancy achieving correct preamble-less short packet reception at very low SNRs. Detection Conclusion and Perspectives

Outline

GNU Radio

Conclusion and Perspectives

Non Binary codes: Galois Field

General context

System model

Detection

Synchronization

QCSP performance

GNU Radio

Conclusion and Perspectives

- Solois Filed of order q (GF(q)) is a finite field that contains q elements, where q is a power of prime number, i.e, $q = 2^p$.
- \succ It is defined using a primitive polynomial \mathbb{P}_x of degree p, where all the operations in modulo \mathbb{P}_x .

Example: p = 3, GF(q = 8), and $P = 1 + x + x^3$

GF element	Binary represent.	Integer represent.
0	000	0
$lpha^0$	001	1
α^1	010	2
α^2	100	4
α^3	011	3
α^4	110	6
α^5	111	7
α^6	101	5

Addition example: $X = (x_0 x_1 x_2), Y = (y_0 y_1 y_2) \in GF(8) \Longrightarrow X \oplus Y = X \underline{XOR} Y$ $Eg.: \alpha^4 \oplus \alpha^1 = 110 \underline{XOR} 010 = 100 = \alpha^2$

Multiplication example:

$$0.\alpha^i = 0$$
 and $\alpha^i.\alpha^j = \alpha^{(i+j) \mod(q-1)}$

Eg.:
$$\alpha^4 . \alpha^3 = \alpha^{7 \mod (7)} = \alpha^0$$

NB codes (NB-LDPC): Definition

NB codes (NB-LDPC): Definition

General context

System model

Detection

QCSP performance

GNU Radio

Cyclic-Code Shift Keying (CCSK)

- CCSK mapping is the construction of different sequences P_{c_k} from a basic sequence P_0 of length $q = 2^p$; $\Rightarrow R_m = p/q$
- → A symbol $c_k \in GF(8)$ is mapped to a circular rotation of a Pseudo-Noise sequence P_0 .

<i>c</i> _k ∈	GF(8)	Sequence P _s	
binary	integer	Chips	
000	0	1 1101000	
001	1	01110100	
010	2	00 <mark>1</mark> 11010	
011	3	000 <mark>1</mark> 1101	
100	4	1000 <mark>1</mark> 110	
101	5	01000 <mark>1</mark> 11	
110	6	101000 <mark>1</mark> 1	
111	7	11010001	

 $P_{s}(k) = P_{0}(k - s \mod q)$ for k = 0, 1, ..., 7

General context

System model

Detection

Synchronization

QCSP performance

Cyclic-Code Shift Keying (CCSK)

- CCSK mapping is the construction of different sequences P_{c_k} from a basic sequence P_0 of length $q = 2^p$; $\Rightarrow R_m = p/q$
- → A symbol $c_k \in GF(8)$ is mapped to a circular rotation of a Pseudo-Noise sequence P_0 .

GF(8)	Sequence P _s	
integer	Chips	
0	1 1101000	
1	0 <mark>1</mark> 110100	
2	00 <mark>1</mark> 11010	
3	000 <mark>1</mark> 1101	
4	1000 <mark>1</mark> 110	
5	01000 <mark>1</mark> 11	
6	101000 <mark>1</mark> 1	
7	1101000 <mark>1</mark>	
	GF(8) integer 0 1 2 3 3 4 5 5 6 6 7	

 $P_{s}(k) = P_{0}(k - s \mod q)$ for k = 0, 1, ..., 7

> Transmission of $c_k = 0$; P_0 + BPSK modulation, Root Raised Cosine (RRC) filter with roll-off factor of 0.35 :

Conclusion and Perspectives

Cyclic-Code Shift Keying (CCSK)

 \blacktriangleright Demodulation of a CCSK frame (P_0 is transmitted): General context \star y = P_o + Noise - P₀ System model 0000000 -2 -3 Detection 2 3 6 7 0 4 5 1 Time * —— P. **Synchronization** -2 QCSP performance -3 0 1 2 3 4 5 6 7 8 Time

Relation between distance and correlation $log(P(\boldsymbol{y}|s)) \approx -\frac{d(\boldsymbol{P}_{s}, \boldsymbol{y})^{2}}{2\sigma^{2}}$ $d(\boldsymbol{P}_{0}, \boldsymbol{y})^{2} = \boldsymbol{y}^{2} + P_{0}^{2} - 2 \lt P_{0}, \boldsymbol{y} >$ $d(P_{0}, \boldsymbol{y})^{2} = 21.5 + 8 - 2 \times 10.0 = 9.5$ $d(P_{1}, \boldsymbol{y})^{2} = 21.5 + 8 - 2 \times 6.2 = 17.1$ Correlation $\checkmark \bigtriangleup$ Distance

Conclusion and Perspectives

Cyclic-Code Shift Keying (CCSK)

CCSK with complex noise

General context

- System model
 - Detection
- Synchronization
- QCSP performance

GNU Radio

Conclusion and Perspectives Correlation output between each of the received symbols y_k and the q CCSK sequences P_s

Quasi Cyclic Short Packet

CCSK with complex noise

General context

 \geq

- System model
 - Detection
- Synchronization
- QCSP performance

GNU Radio

Conclusion and Perspectives **CCSK** sequences Doppler and local 60 oscillator effect 40 Correlation rotation $\max_{k=0}^{1} \begin{bmatrix} L_k \end{bmatrix}$ P_{c_k} demod. -20 e^{j(ωk+φ)} $< y_k, P_s >$ -40 $s \in [0, q-1]$ -60 Complex noise -50 50 0 Real $[L_k]$ 80 LLR Generation 60 y : noisy received sequence L = Log Likelihood Ratio40 \Box 20 $L(s) = Real(\log(\mathcal{P}(\boldsymbol{P}_{s}/\boldsymbol{y})))$ $\sim Real(\langle y, P_s \rangle) s = 0...q - 1$ -20 0 10 20 30 50 60 $L = Real(IFFT(FFT(y_k) \odot FFT(P_0)))$ ς

Correlation output between each of the received symbols y_k and the q CCSK sequences P_s

CCSK with complex noise

General context

 \geq

- System model
 - Detection
- Synchronization
- QCSP performance

GNU Radio

Conclusion and Perspectives **CCSK** sequences Doppler and local 60 oscillator effect 40 Correlation rotation $\max_{k=0}^{1} \begin{bmatrix} L_k \end{bmatrix}$ P_{c_k} ******* demod. -20 e^{j(ωk+φ)} $< y_k, P_s >$ -40 $s \in [0, q - 1]$ -60 Complex noise -50 50 0 Real $[L_k]$ 80 LLR Generation 60 y : noisy received sequence L = Log Likelihood Ratio40 \Box 20 $L(s) = Real(\log(\mathcal{P}(\boldsymbol{P}_{s}/\boldsymbol{y})))$ $\sim Real(\langle y, P_s \rangle) s = 0...q - 1$ -20 0 10 20 30 50 60 $L = Real(IFFT(FFT(y_k) \odot FFT(P_0)))$ ς

Correlation output between each of the received symbols y_k and the q CCSK sequences P_s

CCSK with phase shift

General context

 \geq

- System model
 - Detection
- Synchronization
- QCSP performance

GNU Radio

Conclusion and Perspectives **CCSK** sequences **Doppler and local** 60 oscillator effect 40 Correlation rotation $\begin{bmatrix} L_k \\ 0 \\ 0 \end{bmatrix}$ P_{c_k} demod. -20 e^{j(ωk+φ)} $< y_k, P_s >$ -40 $s \in [0, q - 1]$ -60 Complex noise -50 50 0 Real $[L_k]$ 70 Non-coherent demodulation 60 y : noisy received sequence 50 40 L = Log Likelihood RatioΓ, 30 $L'(s) = |\log(\mathcal{P}(\boldsymbol{P}_s/\boldsymbol{y}))|$ 20 $\sim | \langle y, P_s \rangle | s = 0...q - 1$ 30 50 10 20 40 60 With phase offset, non-coherent demodulation is S required $L' = abs(IFFT(FFT(y_k) \odot FFT(P_0)))$

Correlation output between each of the received symbols y_k and the q CCSK sequences P_s

QCSP frame structure

Detection

GNU Radio

Conclusion and Perspectiv<u>es</u> - K: message length (symbols)- n_a : time of arrival in chips, $n_a = n_c + \Delta$ - N: codeword length (symbols)- f_o : frequency offset; $f_o \in [-F_m, F_m]$ - p: symbol size (bits)- ϕ : phase offset; $\phi \in [-\pi, \pi]$ - q: CCSK sized (chips)- $\sqrt{10^-}$

Synchronization

- Complex AWGN;
$$N(o, \sigma^2)$$
 with $\sigma = \sqrt{\frac{10^{-SNR}}{2}}$

mitigation

 n_c : coarse time offset f_c : coarse frequency offset

NB Decoder

M

Waveforms

Detection problem

Quasi Cyclic Short Packet

General context	P ₀ Message	= A BAABB = {3,0,5}		
System model	CCSK Frame	= {ABB A BA, 3	ABAABB, 0	BAABB A }
Detection •••••••				
Synchronization				
QCSP performance				
GNU Radio				
Conclusion and Perspectives				

Conclusion and Perspectives

GNU Radio

Score(k) = max(L_k) + max(L_{k+6}) + max(L_{k+12})

Score(4) = $max(L_4) + max(L_{10}) + max(L_{16}) = 18$

Waveforms

K. SAIED – Ph.D. defense

CCSK based detection: General case

> N = 5, q=64, with noise

System mode

General context

Synchronizatior

QCSP performance

GNU Radio

Conclusion and Perspectives $\max(|L_k|)$

CCSK based detection: General case

 \blacktriangleright N = 5, q=64, with noise

 $\max(|L_k|)$

General context

Detection 0000000

CSP 🔊

Waveforms

QCSP 🔊

Waveforms

Score function distributions

System model

Detection
0000
000

Synchronization

QCSP performance

GNU Radio

- > Distribution of the score function output for given parameters, when signal does exist or not.
- Illustration of the detection problem.

Score function distributions

- > Distribution of the score function output for given parameters, when signal does exist or not.
- Illustration of the detection problem.

Conclusion and Perspectives

GNU Radio

General context

Detection performance:

Effect of GF(q) order and N

 \mathcal{P}_{md} as function of SNR for $q=2^p$, from p=6 to p=12 according to the following parameters:

- > Number of CCSK symbols N: N = 60 and N = 120.
- > Threshold value U_0 corresponding to $\mathcal{P}_{fa} = 10^{-6}$, $\mathcal{P}_{fa} = 10^{-4}$ and $\mathcal{P}_{fa} = 10^{-10}$.
- Perfect time and frequency synchronization.

Synchronization

Detection

0000000

QCSP performance

GNU Radio

Detection performance:

Effect of GF(q) order and N

 \mathcal{P}_{md} as function of SNR for $q = 2^p$, from p = 6 to p = 12 according to the following parameters:

- > Number of CCSK symbols N: N = 60 and N = 120.
- > Threshold value U_0 corresponding to $\mathcal{P}_{fa} = 10^{-6}$, $\mathcal{P}_{fa} = 10^{-4}$ and $\mathcal{P}_{fa} = 10^{-10}$.
- Perfect time and frequency synchronization.

System model

General context

Detection

0000000

QCSP performance

GNU Radio

General context

Detection performance:

Effect of GF(q) order and N

 \mathcal{P}_{md} as function of SNR for $q = 2^p$, from p = 6 to p = 12 according to the following parameters:

- > Number of CCSK symbols N: N = 60 and N = 120.
- > Threshold value U_0 corresponding to $\mathcal{P}_{fa} = 10^{-6}$, $\mathcal{P}_{fa} = 10^{-4}$ and $\mathcal{P}_{fa} = 10^{-10}$.
- Perfect time and frequency synchronization.

Detection ○○○○●○

Synchronization

QCSP performance

GNU Radio

General context

Detection performance:

Effect of GF(q) order and N

 \mathcal{P}_{md} as function of SNR for $q = 2^p$, from p = 6 to p = 12 according to the following parameters:

- > Number of CCSK symbols N: N = 60 and N = 120.
- > Threshold value U_0 corresponding to $\mathcal{P}_{fa} = 10^{-6}$, $\mathcal{P}_{fa} = 10^{-4}$ and $\mathcal{P}_{fa} = 10^{-10}$.
- Perfect time and frequency synchronization.

Theoretical model is also developed and validated through Monte-Carlo simulation

Detection

0000000

QCSP performance

GNU Radio

Contributions

Detection

General context

Synchronization

QCSP performance

GNU Radio

Conclusion and Perspectives

Observation of a theoretical model for the proposed algorithm in AWGN channel

Assessment of global detection performance

Published in:

[Pub 1]: K. Saied, A. Al Ghouwayel, and E. Boutillon, "Quasi Cyclic Short Packet for Asynchronous Preamble-Less Transmission in Very LowSNRs", in *IEEE Transaction journal on Wireless Communication (IEEE TWC)*, March 2022, p. 1 - 13.

[Pub 2]: C. Moniere, K. Saied, B. Legal, and E. Boutillon, "Time sliding window for the detection of CCSK frames", *in the IEEE Workshop on Signal Processing Systems (SiPS'2021)*, Oct. 2021, Combria, Portugal.

Outline

Problem statement

 \succ S_n^{θ} values in 3D grid where N = 60, q = 64 and affected by $n_a = 20$, $f_o = 0.00875$ ($\theta = 2\pi q f_o = 0.00875$) 1.12π) and SNR = -10 dB. 24Real offset values (n_a, θ_o) Maximum Score Value $(\hat{n}_a, \hat{\theta}_o)$ Detection 23Score Function Output 22Synchronization 212019QCSP performance 18 3π $5\frac{\pi}{2}$ 2π $3\frac{\pi}{2}$ π Symbol rotation Conclusion and Time

Problem statement

 \succ S_n^{θ} values in 3D grid where N = 60, q = 64 and affected by $n_a = 20$, $f_o = 0.00875$ ($\theta = 2\pi q f_o = 0.00875$) 1.12π) and SNR = -10 dB. 24Real offset values (n_a, θ_o) Maximum Score Value $(\hat{n}_a, \hat{\theta}_o)$ Detection 23Score Function Output 22Synchronization 212019QCSP performance 18 3π $5\frac{\pi}{2}$ 2π $3\frac{\pi}{2}$ π Symbol rotation Conclusion and Time

Time Synchronization

System model

Detection

QCSP performance

GNU Radio

Conclusion and Perspectives

> Chip errors for 10^4 detected QCSP frames of length N = 60 and P_0 sequence of length q = 64 chips, at SNR = -10 dB.

Proposed solution

1- Time-frequency grid and detection output Detection Synchronization (n_c, f_c) $rac{1}{4q}$ Hz **GNU** Radio Conclusion and q/4 chips

Proposed solution

General context

System model

Detection

Synchronization

QCSP performance

GNU Radio

Conclusion and Perspectives 1- Time-frequency grid and detection output

2- Finer time-frequency grid and apply detection method to decrease the synchronization errors.

General context

Detection

Synchronization_

QCSP performance

GNU Radio

Conclusion and

Perspectives

0000000000

Proposed solution

1- Time-frequency grid and detection output

- 2- Finer time-frequency grid and apply detection method to decrease the synchronization errors.
- 3- Time synchronization at the symbol level thanks to Weighted Over Modulation (WOM) method.

Proposed solution

General context

Detection

Synchronization

QCSP performance

GNU Radio

Conclusion and

Perspectives

0000000000

- 1- Time-frequency grid and detection output
- 2- Finer time-frequency grid and apply detection method to decrease the synchronization errors.
- 3- Time synchronization at the symbol level thanks to Weighted Over Modulation (WOM) method.
- 4- Time synchronization at the chip level thanks to NB-LDPC structure.

Proposed solution

General context

Detection

Synchronization

QCSP performance

GNU Radio

Conclusion and

Perspectives

0000000000

- 1- Time-frequency grid and detection output
- 2- Finer time-frequency grid and apply detection method to decrease the synchronization errors.
- 3- Time synchronization at the symbol level thanks to Weighted Over Modulation (WOM) method.
- 4- Time synchronization at the chip level thanks to NB-LDPC structure.

Over-Modulation (OM)

General context

System model

Detection

Synchronization

QCSP performance

GNU Radio

Conclusion and Perspectives OM generates a pre-defined phase pattern (a known sequence of ±1: +1 no phase change, and -1 (rotation)) within the sequence of the symbols being transmitted.

OM definition

- Sequence $B = [b_0, b_1, ..., b_{N-1}]$ with $b_k \in \{-1, 1\}$ and have good auto-correlation properties.
- QCSP frame defined as:

 $\boldsymbol{F} = [b_0 \boldsymbol{P}_{c_0}, b_1 \boldsymbol{P}_{c_1}, \dots, b_{N-1} \boldsymbol{P}_{c_{N-1}}]$

Over-Modulation (OM)

General context

System model

Detection

Synchronization

QCSP performance

GNU Radio

Conclusion and Perspectives OM generates a pre-defined phase pattern (a known sequence of ±1: +1 no phase change, and -1 (rotation)) within the sequence of the symbols being transmitted.

OM definition

- Sequence $B = [b_0, b_1, ..., b_{N-1}]$ with $b_k \in \{-1, 1\}$ and have good auto-correlation properties.
- QCSP frame defined as:

 $\boldsymbol{F} = [b_0 \boldsymbol{P}_{c_0}, b_1 \boldsymbol{P}_{c_1}, \dots, b_{N-1} \boldsymbol{P}_{c_{N-1}}]$

OM toy example:

OM sequence B			1	1	1	-1	1	-1	1	-1	-1	-1	
Correlation output	0	0	q	q	q	-q	q	-q	q	-q	-q	-q	
Dot product	0	0	q	q	q	q	q	q	q	q	q	q	=10q

Over-Modulation (OM)

General context

System model

Detection

Synchronization

QCSP performance

GNU Radio

Conclusion and Perspectives OM generates a pre-defined phase pattern (a known sequence of ±1: +1 no phase change, and -1 (rotation)) within the sequence of the symbols being transmitted.

OM definition

- Sequence $B = [b_0, b_1, ..., b_{N-1}]$ with $b_k \in \{-1, 1\}$ and have good auto-correlation properties.
- QCSP frame defined as:

 $\boldsymbol{F} = [b_0 \boldsymbol{P}_{c_0}, b_1 \boldsymbol{P}_{c_1}, \dots, b_{N-1} \boldsymbol{P}_{c_{N-1}}]$

OM toy example:

	OM sequence B			1	1	1	-1	1	-1	1	-1	-1	-1	
	Correlation output	0	0	q	q	q	-q	q	-q	q	-q	-q	-q	
1 symbol shift	Dot product	0	0	q	q	q	q	q	q	q	q	q	q	=10 <i>q</i>
	Correlation output	0	q	q	q	-q	q	<i>-q</i>	q	-q	-q	-q	0	
	Dot product	0	0	q	q	-q	-q	-q	-q	-q	q	q	0	= -q
2 symbol shift	Correlation output	q	q	q	-q	q	-q	q	-q	-q	-q	0	0	
	Dot product	0	0	q	-q	q	q	-q	q	-q	q	0	0	=2q

General context

Detection

Synchronization_

0000000000

Correlation output

 \succ Correlation output between each of the received symbols y_k and the q CCSK sequences P_s

> Pattern of the maxima of the CCSK correlation values of each received symbol, Synchronized and No noise

QCSP performance

GNU Radio

Conclusion and Perspectives

erspectives

General context

Detection

Synchronization_ 00000000000

QCSP performance

GNU Radio

Conclusion and Perspectives

Pattern of the point-by-point \geq multiplication of $L_k(d_k)$ and **B(k)** - Wrong hypothesis

Quasi Cyclic Short Packet

-1

0

5

10

15

20

25

30

-1

-1

1

0.5

0

 $\operatorname{Real}[\boldsymbol{L}_k(d_k)]$

-0.5

 \geq

 \geq

Waveforms

Waveforms

CCSK additional information

General context

System model

Detection

Synchronization

QCSP performance

GNU Radio

Conclusion and Perspectives → Output of the correlation is weighted by a coefficient α_k that indicates the reliability of the decision of CCSK demodulation. → Weighted OM (WOM) algorithm

OM results

chips, at SNR = -10 dB.

General context

 \blacktriangleright Chip errors for 10⁴ detected QCSP frames of length N = 60 and P₀ sequence of length q = 64

Conclusion and Perspectives After symbol synchronization

Proposed solution

General context

Detection

Synchronization

00000000000

- 1- Time-frequency grid and detection output
- 2- Finer time-frequency grid and apply detection method to decrease the synchronization errors.
- 3- Time synchronization at the symbol level thanks to Weighted Over Modulation (WOM) method.

4- Time synchronization at the chip level thanks to NB-LDPC structure.

Chip synchronization: PC concept

Chip synchronization: PC concept

Chip synchronization: PC concept

Chip synchronization: PC concept

Quasi Cyclic Short Packet

Time synchronization results

General context

- > Detection grid $(q/4, \pi/2)$
- > N = 60 QCSP symbols
- > NB-LDPC $R_c = 1/3, q = 64$
- Asynchronous AWGN channel
- Time and frequency shifts are uniformly randomly distributed.

K. SAIED – Ph.D. defense

General context

Detection

Synchronization

0000000000

Contributions

Synchronization in time

Characterization and identification of time synchronization errors

Proposition of a global time synchronization algorithm at very low SNRs

Utilization of the weighted over-modulation for the symbol synch.

Ttilization of the NB-LDPC code for the chip synchronization with complexity reduction

Published in:

GNU Radio

QCSP performance

Conclusion and Perspectives

[Pub 3]: K. Saied, A. Al Ghouwayel, and E. Boutillon, "Blind Time-Synchronization of CCSK Short Frames", in The 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob21), Oct. 2021, Bologna, Italy.

[Patent 1]: E. Boutillon and K. Saied, "A method for a transmitter to transmit a signal to a receiver in a communication system, and its corresponding receiving method", July 2021.

M

NB Decoder

Phase in QCSP frame

Phase in QCSP frame

K. SAIED – Ph.D. defense

Phase in QCSP frame

GNU Radio

Conclusion and Perspectives

Phase in QCSP frame: Side information

Estimation using the side information coming from: General context $|\gamma_k|$ 60 1) Soft demodulation of the CCSK. 50 2) Error control code 40 $|\epsilon_k|$ 30 3 10 20 30 Detection $\alpha_k = \frac{|\gamma_k| - |\epsilon_k|}{|||}$ 2 Synchronization Symbol phase offset 1 0 . 1 Diameter of the circle is α_k 0 QCSP performance 0 Less reliable More reliable -2 **GNU** Radio -3 Phase estimation using 10 20 30 50 40 60 0 Conclusion and Symbol index kdirect weighted FFT Perspectives method by 1) and 2)

General context

Detection

Synchronization

QCSP performance

GNU Radio

Conclusion and Perspectives

Phase synchronization

NB-LDPC performance in an AWGN channel with CCSK modulation. QCSP frame K = 20 symbols, $R_c = 1/3$, q = 64. The decoding algorithm used is the EMS with 30 decoding iterations.

[Ref 5]: Saied, K., Ghouwayel, A. & Boutillon, E., Phase Synchronization for NB-LDPC Coded CCSK Short Frames in Submitted to the 2022 IEEE Vehicular Technology Conference VTC2022

Contributions

General context

System model

Detection

Synchronization

QCSP performance

GNU Radio

Conclusion and Perspectives in phase

Synchronization

Proposition of phase and frequency synchronization methods for QCSP

Stimation using FFT with weighted coefficients

Pr

Proposition of a parametric method based on the Maximum-likelihood estimation using the parametric probability density function

Published in:

[Pub 4]: K. Saied, A. Al Ghouwayel, and E. Boutillon, "Phase Synchronization for Non-Binary Coded CCSK Short Frames", accepted in the 2022 IEEE 95th Vehicular Technology Conference: VTC2022-Spring.

[Deliv 2]: K. Saied and E. Boutillon."Blind Synchronization Algorithm for QCSP Frames". [Online]. Available: https://qcsp.univ-ubs.fr/wp-content/uploads/2022/01/QCSP_Synchronization.pdf

Outline

General context

Detection

Synchronization

QCSP

performance

Conclusion and

Perspectives

QCSP system performance

Overall probability at the receiver side

The QCSP parameters we choose to work on: N = 120 symbols, q = 64, $R_c = 1/2$ Asynchronous AWGN channel

[Ref 6]: Polyanskiy, Y., Poor, H. V. & Verdu, S., Channel Coding Rate in the Finite Blocklength Regime, *IEEE Transactions on Information Theory* **56**, 2307–2359, issn: 1557-9654 (May 2010). [Ref 7]: Savin, V., *Non-Binary Polar Codes for Spread-Spectrum Modulations in 2021 11th International Symposium on Topics in Coding (ISTC)* (2021), 1–5.

Comparison with a classical frame

General context

Contant de la

Detection

Synchronization

QCSP performance

GNU Radio

Conclusion and Perspectives

Detection-correction with optimal synchronization

Aiming to do the comparison with up-to-date codes, we build an adhoc solution taking elements from the Narrowband IoT (NB-IoT) 3GPP standard [ref 8].

- At SNR ≈ -12 dB:
 - Preamble p = 793 Zadoff–Chu sequence to guarantee $\mathcal{P}_{md} = 10^{-4}$ and $\mathcal{P}_{fa} = 10^{-6}$.
 - For *k* = 360 bits (60 symbols) frame length with a classical solution is 9973 symbols.
 - perfectly synchronized.
- > The size of the proposed QCSP sequence is 7680 ($60 \times 2 \times 64$).
- Using QCSP frame provides a frame size reduced by 23%.
- This 23% saving translates directly into an increase of the wireless channel capacity and in energy saving for the wireless sensors.

[Ref 8]: 43GPP. Performance evaluation of LDPC codes for NR eMBB data. Discussion and decision R1-1713740. Version 6.1.4.1.6. 3rd Generation Partnership Project (3GPP), 2017

Quasi Cyclic Short Packet

Proof of Concept: GNU radio

Transmitter: Super-Frame structure

USP 🔊

loT Waveforms

Receiver side

Conclusion and Perspectives

Receiver side

Detection **GNU Radio** 00000 Conclusion and

Perspectives

power of noise P_n

Output of detection filter

Conclusion and Perspectives

Results

K. SAIED – Ph.D. defense

Results

Perspectives

Results

Outline

Lab-STICC CNIS	Conclusion	QCSP Tot Waveforms
General context		500
System model		
Detection		Preamble-less frames for
Synchronization		short packet transmission at very low SNRs
QCSP performance		
GNU Radio		
Conclusion and Perspectives		

Preamble-less frames for short packet transmission at very low SNRs

 \mathcal{M}

Conclusion

Conclusion

Conclusion

Perspectives

Improving point to point communication (use of Zadoff-Chu sequence, use of NB-Turbo codes, OM in detection, ...)

Synchronization

Detection

QCSP performance

GNU Radio

Conclusion and Perspectives

General context

Perspectives

Improving point to point communication (use of Zadoff-Chu sequence, use of NB-Turbo codes, OM in detection, ...)

Synchronization

Detection

QCSP performance

GNU Radio

Conclusion and Perspectives

Improving the Software Defined Radio demonstrator to achieve reliable realtime reception.

Perspectives

Perspectives

Conclusion and Perspectives

Perspectives:

General context

System model

ete	$C^{\dagger}I$	n
	CU	

Synchronization

QCSP performance

GNU Radio

Conclusion and Perspectives

QCSP frame offers many degree of diversity

- Generic diversity:
 - \rightarrow Time, frequency, space diversity (using MIMO).
- > Specific diversity:
 - \rightarrow Phase (two frames in quadrature are orthogonal).
 - \rightarrow Spreading sequence of the CCSK modulation.
 - \rightarrow Overmodulation sequence of the frame.
 - \rightarrow Error control code associated to each user.

Experimentation of QCSP in the context of IoT multi-user access and LTE channel.

How to take maximum profit of the available diversity?

Publications

> Patent:

-E. Boutillon and K. Saied, "A method for a transmitter to transmit a signal to a receiver in a communication system, and its corresponding receiving method", July 2021.

> Journals:

-K. Saied, A. Al Ghouwayel, and E. Boutillon, "Quasi Cyclic Short Packet for Asynchronous Preamble-Less Transmission in Very LowSNRs", in IEEE Transaction journal on Wireless Communication (TWC), March 2022, p. 1 - 13.

-C. Moniere, K. Saied, B. Legal, and E. Boutillon, extention of "Time sliding window for the detection of CCSK frames", to be submitted to IEEE Open Journal of the Computer Society (OJCS) –**To be submitted soon**.

> Conferences:

-K. Saied, A. Al Ghouwayel, and E. Boutillon, "Blind Time-Synchronization of CCSK Short Frames", *in The 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob21)*, Oct. 2021, Bologna, Italy.
-C. Moniere, K. Saied, B. Legal, and E. Boutillon, "Time sliding window for the detection of CCSK frames", *in the IEEE Workshop on Signal Processing Systems (SiPS'2021)*, Oct. 2021, Combria, Portugal.

-K. Saied, A. Al Ghouwayel, and E. Boutillon, "Phase Synchronization for Non-Binary Coded CCSK Short Frames", accepted in the 2022 IEEE 95th Vehicular Technology Conference: VTC2022-Spring. (Accepted)

-L. Camacho, K. SAIED, and E. Boutillon, "QCSP detection using Over-Modulation at very low SNRs". (in progress)

Deliverables to ANR

-K. Saied and E. Boutillon."Blind Detection Algorithm for QCSP Frames". [Online]. Available: <u>https://qcsp.univ-ubs.fr/wp</u> <u>content/uploads/2022/01/QCSP_Detection-1.pdf</u>

-K. Saied and E. Boutillon."Blind Synchronization Algorithm for QCSP Frames". [Online]. Available: https://qcsp.univ-ubs.fr/wp-content/uploads/2022/01/QCSP_Synchronization.pdf

