Efficient Software and Hardware Implementations of a OCSP Communication System

Camille Monière^{1, 2} Bertrand Le Gal² Emmanuel Boutillon¹

1:Lab-STICC, Université de Bretagne Sud, 56100 Lorient, France, Email: firstname.lastname@univ-ubs.fr

²:IMS, Bordeaux-INP, 33400 Talence, France, Email: firstname.lastname@ims-bordeaux.fr

In proceedings of DASIP, Budapest, Hungary 20th of June. 2022

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al

Context

QCSF Issue

System Implementatio

> Transmitter Detection

Principle Inaccuracy mitigati

Variations

renormances

Detector

Detector Software Imi

Software Implementation
Hardware Implementation

Conclusi

Outline

Context

System Implementation

Principle Inaccuracy mitigations Variations

Performances

Software Implementation Hardware Implementation

Conclusion

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

Introduction

Issu

System

Transmitter

Detection Principle

Inaccuracy mitigation

Variations

Performances

Dotostor

Detector

Software Implemental

Conclus

Internet of Things (IoT)

- Exponential growth during last decades,
- over 50 billions connected devices expected soon,

and yet...

 detection/synchronization metadata can represent more than 50% of the consumed resources.

Spatial Technologies

- Require stability and certainty and...
- Cyclic-Code Shift Keying (CCSK) is used by Quasi-Zenith Satellite System

(Japanese satellite navigation enhancement system

 Non-Binary Error Correcting Codes are used in BeiDou

(Chinese satellite navigation system

Efficient Implementations of a QCSP Communication System

C. MONIÈRE et al.

Context

QCSP Issue

System Implementation

Detection

Principle Inaccuracy mitigation

Variations

'erformances

otootor

etector Software Impl

Software Implementati

- Exponential growth during last decades.
- over 50 billions connected devices.

detection/synchronization metadata can

Spatial Technologies

- Require stability and certainty and
- Cyclic-Code Shift Keying (CCSK) is used by Ouasi-Zenith Satellite System

(Japanese satellite navigation enhancement system)

 Non-Binary Error Correcting Codes are used in BeiDou

(Chinese satellite navigation system)

Efficient Implementations of a QCSP Communication System

C. MONIÈRE et al.

Context Introduction

- Exponential growth during last decades.
- over 50 billions connected devices expected soon,

and yet...

 detection/synchronization metadata can represent more than 50% of the consumed resources.

- Require stability and certainty
- Cyclic-Code Shift Keying (CCSK) is used by *Quasi-Zenith Satellite System*

(Japanese satellite navigation enhancement system)

 Non-Binary Error Correcting Codes are used in BeiDou

(Chinese satellite navigation system)

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context Introduction QCSP Issue

System Implementation

> Transmitter Detection

Inaccuracy mitigations

erformances

Transmitter

Software Impler

Hardware Implem

Quasi-Cyclic Small Packet (QCSP) Project

https://qcsp.univ-ubs.fr/

- Project funded by the ANR, grant ANR-19-CE25-0013-01
- Thesis directed by E. BOUTILLON, supervised by B. LE GAL.

"The aim of the QCSP project is to contribute to the

evolution of IoT networks by defining, implementing and testing a new coded modulation scheme dedicated to IoT networks."

Efficient Implementations of a QCSP Communication System

C. MONIÈRE et al.

Context

Metadata

Allows detection/synchronization of the frame

Payload

Contains the information to transmit

Redundancy

Provides error-tolerance to the payload

Implementations of a QCSP Communication System

C. MONIÈRE et al.

Efficient

Context

QCSP Issue

System Implementation

> Transmitter Detection

Inaccuracy mitigation

Performances

Transmitte

etector

Software Implementa

Conclusio

[1]: Y. Polyanskiy. "Asynchronous Communication". In: *IEEE Trans. Inform. Theory* 59.3 (2013), pp. 1256–1270

◆□ > ◆□ > ◆臺 > ◆臺 > 臺 り ◇ ♡ 5/21

Efficient Implementations of

a QCSP Communication

System

C. MONIÈRE et al.

Context

OCSP

A model exists, how can it reach real-time?

throughput > 4 MChip/s | Low-power transmitter | completely blind transmission

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

QCSP Issue

System

Fransmitter Detection

Inaccuracy mitigations
Variations

Performance:

ransmitter

Detector Software Im

Software Implementation
Hardware Implementation

A model exists, how can it reach real-time?

throughput > 4 MChip/s | Low-power transmitter | completely blind transmission

Efficient Implementations of a QCSP Communication System

C. MONIÈRE et al.

Context

OCSP

Message **M** "1 2 1"

 \Rightarrow

Codeword **C** "1 2 1 3 2 3"

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

Introduct

Issue

System Implementation

Detection

Principle

Inaccuracy mitigations

Performance:

Transmitte

Detector

Software Implementation

Conclusi

Codeword **C** "1 2 1 3 2 3"

 \Rightarrow

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

OCSP

Issue

System

Detection

Principle

Oorformonooo

Transmitte

Detector

Software Implementation

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

Introduction

QCSP Issue

System

Transmitti Detection

Principle

Inaccuracy mitigations

Performance

Transmitte

etector

Software Implementation

Conclusi

Efficient Implementations of

a QCSP Communication System

C. MONIÈRE et al

Context

Introduction

QCSP Issue

System

Transmitter

Detection

Inaccuracy mitigation

Performance

Transmit

Detector

Software Implementat

Efficient Implementations of

a QCSP Communication System

C. MONIÈRE et al

Context

Introduction

QCSP Issue

System

Implementation

Detection

Inaccuracy mitigation

Performance

Transmitte

Detector

Software Implement

Efficient Implementations of

a QCSP Communication System

C. MONIÈRE et al

Context

OCSP

?**= =**??**= ==== ==?= ====** *7777777777*"

■: +1 — ■: -1 — Z: Noise — ?: Noisy Chip

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

ntroduction

QCSP Issue

System

Transmitte

Inaccuracy mitigations

Performanc

Transmitte

etector

Software Implementation

Conclus

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al

Context

Introduction

Issue

System Implementation

Fransmitter Detection

Inaccuracy mitigations

_ .

Transmitter

etector

Software Implementation

Conclus

Decoded Message M'

Sidenote: OCSP frame demodulation product is directly usable by the NB-LDPC decoder.

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

QCSP Issue

System Implementation

> Transmitter Detection

Inaccuracy mitigations

Performances

Transmitt

etector Software Imp

Software Implementation

Need efficient implementations.

- The legacy CCSK demodulation method is not efficient for CCSK based detection,
- The new Time Sliding window method is promising.

- [2]: O. Abassi et al. "Non-Binary Low-Density Parity-Check Coded Cyclic Code-Shift Keying". In: proceedings of WCNC. IEEE, 2013
- [3]: C. Monière et al. "Time Sliding Window for the Detection of CCSK Frames". In: proceedings of SiPS. IEEE, 2021

Efficient Implementations of a QCSP Communication System

C. MONIÈRE et al.

Context

QCSP Issue

System Implementation

Fransmitter Detection

Inaccuracy mitigations

erformances

ransmitter

Detector

Software Implementation

Need efficient implementations.

Transmission

Detection

Transmission must be simple enough for low-end sensor nodes, and detection must satisfy standard defined throughput

[4]: "IEEE Std 802.15.4-2020, IEEE Standard for Low-Rate Wireless Networks". In:

(May 2020), p. 799

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

QCSP Issue

System
Implementation

Transmitter Detection

Inaccuracy mitigations
Variations

Derformance

Transmitter

Detector

Software Implementation

Conclusio

Transmitter — Low cost

SIMD and memory swap

BRAM or LUTRAM direct read, or shift register on FPGA.

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

QCSP Issue

System

Transmitter Detection

Principle

Inaccuracy mitigations
Variations

Performances

Transmitter

etector

Software Implementation

Conclusi

Transmitter — "Bottleneck"

NB-LDPC — GF(q), $q = 2^m$ Nested loops (redundancy calculus)

FIR Filter — 21 coefficients Cumulative sum of products through time just some few CPU instructions,

— or —

pipelines and duplicated operators on FPGA.

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

QCS Issue

System

Transmitter Detection

Principle Inaccuracy mitigations

erformances

Transmitte

Detector

Software Implementation

Conclusi

Transmitter — "Bottleneck"

NB-LDPC — GF(q), $q = 2^m$ Nested loops (redundancy calculus)

FIR Filter — 21 coefficients Cumulative sum of products through time just some few CPU instructions,

— or —

pipelines and duplicated operators on FPGA.

Both processes are already explored and optimized.

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

QCSI

System

Transmitter Detection

Principle Inaccuracy mitigati

Variations

'erformances

Transmitte

Detector

Software Implementation

Conclusio

The harder part

Principle:

Compare a detection score against a threshold [5].

Score \approx cumulative sum of the maxima of the N last correlation with the CCSK sequence \mathbf{P}_0 , thus representing the *likelyhood* of the last frame-long buffer to be a frame.

Time granularity p_{Δ} : score values calculated every q chips.

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

QCSP Issue

System

Detection

Principle

Inaccuracy mitigation

Performances

Transmitter

Detector

Software Implementation

Conclusio

Time/frequency errors impact on reliability

Δ	_	time shift (chips)
ω	_	frequency shift (radians/symbol)

A parasitic rotation results from frequency errors (clock inaccuracies, doppler effect)

Note: rotation for q chips (size of the correlation and of a symbol) is considered

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context Introduction

QCSP Issue

System Implementatio

Detection

Inaccuracy mitigations

erformances

Transmitter Detector

Software Implementation

Time/frequency errors impact on reliability

Δ	_	time shift
		(chips)
ω	_	frequency shift
		(radians/symbol)

Time window:
$$[0, p_{\Delta} - 1]$$
, with $p_{\Delta} \in [1, q - 1]$

Rotation window: $[-\pi,\pi]$ divided in ${\it p}_{\omega}$ equal part,

with
$$p_{\omega}\,=\,1$$
, 2, ..., 8

reliability/performance trade off possible, by adjusting p_{Δ} and p_{ω} values.

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

QCSF Issue

System

Transmitter Detection

Principle Inaccuracy mitigations

. .

renomiances

Detector

Software Implement

Conclus

Time/frequency errors impact on reliability

Time window: $[0, p_{\wedge} - 1]$. with $p_{\Delta} \in [1, q-1]$

Rotation window: $[-\pi, \pi]$ divided in p_{ω} equal part,

with $p_{...} = 1, 2, 8$

reliability/performance trade off possible, by adjusting p_{Δ} and p_{ω} values.

Efficient Implementations of a QCSP Communication System

C. MONIÈRE et al.

Context

Inaccuracy mitigations

Correlation Methods

Legacy

Legacy method, inherited from the literature[2].

Pros:

- flexibility,
- ▶ independent processing along $//_{\Delta}$ and $//_{\omega}$,
- FFTs are already optimized,
- FIFO memory can be shared or distributed.

Cons:

- batch processing,
- not well suited for dataflow tasks,
- consumption.

Efficient Implementations of a QCSP Communication System

C. MONIÈRE et al.

Context

QCSP Issue

System Implementation

> Transmitter Detection

Inaccuracy mitigations

Variations

Performances

ransmitter

etector

Software Implementation

Recently introduced method [3].

Pros:

- ▶ independent processing along $//_{\omega}$,
- quite lighter, complexity speaking (for equivalent p_{Δ} , p_{ω}),
- dataflow by design.

Cons:

- requires p_{Δ} set at q,
- memory sharing is harder.

Using Time Sliding Windows

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

QCSP Issue

System

Transmitter Detection

Detection Principle

Inaccuracy mitigations

Performance

Transmitte

Detector

Software Implementation

Conclusio

Correlation Methods

Algorithmic Complexities comparison

when $p_{\Delta} = q$ (which also results in better reliability), TS has a clear advantage.

Efficient Implementations of a QCSP Communication System

C. MONIÈRE et al.

Context

Variations

Performances

Settings

From now on:

$$K = 20$$
 $m = 6$
 $q = 64$
 $N = 60$
 $\mathcal{O} = 1$

$$R_{\it eff} = rac{1}{32}$$
 $Payload = 120 \ {
m bits}$
 $Symbol = 64 \ {
m chips}$
 $Frame = 3840 \ {
m chips}$

Efficient Implementations of a QCSP Communication System

C. MONIÈRE et al.

Context

Performances

Performances

Settings

From now on:

$$K=20$$
 $m=6$
 $q=64$
 $N=60$
 $Q=1$
 $R_{\rm eff}=\frac{1}{32}$
 $R_{\rm eff}=\frac{1}{32}$

Note: Oversampling is never set to 1 in real systems, rather to 8. However, each sampling frequency is process independently

Efficient Implementations of a QCSP Communication System

C. MONIÈRE et al.

Context

Performances

Transmitter

Implementation results

Throughput for three different implementation on different targets.

Software using C/C++ on ARM CPUs:

- A-53 (1.4 GHz, 32-bit, RAM 1 GB),
- A-72 (1.5 GHz, 64-bit, RAM 4 GB).

Resource consumption for FPGA implementations.

Hardware using C/C++ for HLS on Xilinx targets:

- Artix 7,
- Spartan 7.

clocked at 100 MHz, and using two architectures (using #pragma and directives):

- · Arch. 1 throughput optimized,
- Arch. 2 resource optimized.

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

QCSF Issue

System

Transmitter Detection

Inaccuracy mitigations

Performances

Transmitter

Software Impleme

Transmitter

Implementation results

Throughput for three different implementation on different targets.

Resource consumption for FPGA implementations.

Way above targeted results, emphasizing the low complexity of the transmitter. Plus, who can do more can do less.

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

QCSP Issue

System

Detection

Inaccuracy mitigations
Variations

Performances

Transmitter

Detector

Software Implementation

Software Implementation

Benchmarked on a Linux server, equipped with an Intel Xeon-6148 Gold dual socket, 20 cores/socket, 256 GB of RAM, clocked to 3.5 GHz in average.

FFT Method

• FFT implemented thanks to FFTW[6]

 \bullet Implemented monothreaded and multithreaded along $//_\Delta$ using OpenMP

Time Sliding Method

- Written from scratch in C++11
- Implemented to make use of GCC vectorization feature (SIMD, loop unrolling, ...)

Efficient Implementations of a QCSP Communication System

C. MONIÈRE et al.

Context

QCSP Issue

System Implementation

> Transmitter Detection

Variations

erformances

Transmitter

Detector Software In

Software Implementation

Results

Slowest \Rightarrow FFT with $p_{\Delta}=16$ and $p_{\omega}=8$

Fastest
$$\Rightarrow$$
 FFT MT with $p_{\Delta}=8$ and $p_{\omega}=4$ \rightarrow but the lowest detection performances \rightarrow However \rightarrow

Time Sliding ($p_{\omega}=4$) achieve better throughput than FFT MT ($p_{\Delta}=16$, $p_{\omega}=8$), for comparable detection performances and $16\times$ less CPU power

Efficient Implementations of a QCSP Communication System

C. MONIÈRE et al.

Context

QCSP Issue

System Implementation

Transmitter
Detection
Principle

Inaccuracy mitig

B. d.

Transmitte

Detector

Software Implementation

Hardware Implementation

Results given by the Xilinx HLS tool (after place and route stage) for a Kintex 7 clocked at 100MHz

 FFT data are synthetic, extrapolated from one optimized core which processes 16-bits fixed-point data

Time Sliding data correspond to a full system processing floating-point data

Both written in C/C++ for HLS, optimized for throughput at all costs (to explore the limits)

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

QCSP Issue

System Implementation

Detection Principle

Inaccuracy mitigations
Variations

erformances

Detector

Detector Software II

Software Implementation

Hardware Implementation

Conclusion

Results

Fastest \Rightarrow Time Sliding with the highest detection performances ($p_{\omega}=4$)

Time sliding with $p_{\omega}=8$ cannot be implemented (neither FFT because of DSP, lowering their number would affect throughput ...)

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

QCSP Issue

System Implementation

Detection Principle

Inaccuracy mitigation

Performances

Transmitter

Software Implementation

Hardware Implementation

Suited for Wireless Sensor Networks

The QCSP transmitter is low-cost and low-complexity.

An implementation of the receiver have achieved throughput allowing real-time frame detection, for an acceptable complexity for a high end base station

The new time sliding method is undoubtedly the best for dataflow processing

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

Introductio

QC: Issu

System

Transmitte Detection

Principle

Inaccuracy mitigations

erformances

Transmitte

Detector

Software Implementation

Conclusion

Suited for Wireless Sensor Networks

But still work to do

A fixed-point model of the receiver has been defined and is at last stage of implementation on FPGA

A way to process small batch of data using the time sliding method has been imagined, and may reduce memory usage

The remains of the communication system must be optimized

Multi-user scenarios are currently explored

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

QCSP Issue

> System Implementation

Transmitter Detection

Inaccuracy mitigations

Performances

Transmitter

etector Software Implementati

Software Implementation Hardware Implementation

Conclusion

Last achievement

- GPS location of a moving device sent using QCSP modulation
- Software detector running on the roof of a building
- Achieved a range of 500 m with low-quality antennas
 - For a consumption lower than 1 μ J per information bit

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

QCSP Issue

System

Detection

Inaccuracy mitigations Variations

Performances

Transmitte

Detector Software Impleme

Conclusion

Thank you for your attention, have you any question?

Efficient Implementations of a QCSP Communication System

C. MONIÈRE et al.

Context

QCS Issu

System

Detection

Principle Inaccuracy mitig

Variations

Performances

Dotostor

Software Implementation

Conclusion

Bibliography

- [1] Y. Polyanskiy. "Asynchronous Communication". In: *IEEE Trans. Inform. Theory* 59.3 (2013), pp. 1256–1270.
- O. Abassi et al. "Non-Binary Low-Density Parity-Check Coded Cyclic Code-Shift Keying". In: proceedings of WCNC. IEEE, 2013.
- [3] C. Monière et al. "Time Sliding Window for the Detection of CCSK Frames". In: proceedings of SiPS. IEEE, 2021.

- [4] "IEEE Std 802.15.4-2020, IEEE Standard for Low-Rate Wireless Networks". In: (May 2020), p. 799.
- [5] K. Saied. "Quasi-Cyclic Short Packet (QCSP) Transmission for IoT". Theses. Université Bretagne Sud. Mar. 2022.
- [6] M. Frigo and S.G. Johnson. "The Design and Implementation of FFTW3". In: Proceedings of the IEEE 93.2 (Feb. 2005), pp. 216–231. issn: 1558-2256. doi: 10.1109/IPBRC.2004.840301

Efficient
Implementations of
a QCSP
Communication
System

C. MONIÈRE et al.

Context

QCSP

System

Fransmitter Detection

Principle

Inaccuracy mitigations

'erformances

Fransmitter

etector

Software Implementation