

FEEDBACK FROM REAL-TIME EXPERIMENTS

Camille MONIÈRE, PhD Student

Lab-STICC, CNRS UMR 6285 IMS, CNRS UMR 5218 Université de Bretagne Sud, France Université de Bordeaux, France 10/06/2022

QCSP Meeting, LETI, Grenoble, France

C. MONIÈRE

Sommaire

- $\bullet~\mathrm{QCSP}$ System Model
- Implementation

2 Experiments

- Detection Critical Point: Threshold
- Urban Area Experiments

3 CONCLUSION

C. MONIÈRE

C. MONIÈRE

C. MONIÈRE

 $F_s = 1$ Msps but only half of the samples are used in detection resulting in $F'_s = .5$ Msps

<□ > < □ > < □ > < Ξ > < Ξ > Ξ - の Q @ 5/22

C. MONIÈRE

	Experiments	Conclusion	References
	•••	000	0
Detection Critical Point: Threshold			

Issue

Score (function of Δ and ω)

Threshold can be calculated from synthetic values but . . .

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 6/22

C. MONIÈRE

Experiments

Conclusion 000

lssue

Score (function of Δ and ω)

Threshold can be calculated from synthetic values but ...

<ロ> < 団> < 団> < ヨ> < ヨ> < ヨ> ヨ のへで 6/22

• Radio channel in urban area is not Gaussian,

C. MONIÈRE

Issue

Score (function of Δ and ω)

Threshold can be calculated from synthetic values but ...

(ロ) (母) (言) (言) (言) (つ) (0) (6/22)

- Radio channel in urban area is not Gaussian,
- oversampling was not considered.

C. MONIÈRE

Issue

Score (function of Δ and ω)

Threshold can be calculated from synthetic values but ...

- Radio channel in urban area is not Gaussian,
- oversampling was not considered.

A criterion to set the threshold is needed:

C. MONIÈRE

Issue

Score (function of Δ and ω)

Threshold can be calculated from synthetic values but . . .

- Radio channel in urban area is not Gaussian,
- oversampling was not considered.

A criterion to set the threshold is needed:

MTBFA: Mean Time Between False Alarms

C. MONIÈRE

Experiments

Conclusion 000

Protocol: Measuring the MTBFA

- No QCSP transmission,
- uncontrolled environment (office),
- free running detector.

Detections (*thus, false alarms*) are counted. After 100 false alarms or 5 hours elapsed, a new threshold is tested.

C. MONIÈRE

Experiments

Conclusion 000

Protocol: Measuring the MTBFA

- No QCSP transmission,
- uncontrolled environment (office),
- free running detector.

Detections (*thus, false alarms*) are counted. After 100 false alarms or 5 hours elapsed, a new threshold is tested.

C. MONIÈRE

CONTEXT O Detection Critical Point: Threshold Experiments

Conclusion

Results for four different thresholds, receiver gain maxed-out

Threshold = $140.00 \Rightarrow MTBFA = 7.35 s$ Count Count time between two false alarm (s) Threshold = $141.25 \Rightarrow MTBFA = 55.82 s$ Count Count time between two false alarm (s)

Threshold = $141.00 \Rightarrow MTBFA = 26.92 s$

C. MONIÈRE

Feedback from real-time experiments

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆 < つへ () 9/22

C. MONIÈRE

• Does it work?

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆 < つへ () 9/22

C. MONIÈRE

- Does it work?
- Is it resilient to the channel evolution?

• Does it work?

Best way to know is to test it in real conditions!

• Is it resilient to the channel evolution?

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆 < つへ () 9/22

Transmitter

Standalone, embedded in a car moving through the town.

C. MONIÈRE

Experiments

Conclusion 000

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ = りへで 11/22

C. MONIÈRE

Experiments

Conclusion 000

C. MONIÈRE

	Experiments 000 00000000	Conclusion 000	References 0
Urban Area Experiments			

0	32	64	68	74	80	81	88	104	120

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ = りへで 12/22

C. MONIÈRE

	Experiments 000 00000000	Conclusion 000	References 0
Urban Area Experiments			

◆□▶ < @ ▶ < E ▶ < E ▶ E の Q ℃ 12/22</p>

C. MONIÈRE

	Experiments 000 00000000	Conclusion 000	References 0
Urban Area Experiments			

	Experiments 000 00000000	Conclusion 000	References 0
Urban Area Experiments			

	Experiments 000 00000000	Conclusion 000	References 0
Urban Area Experiments			

	Experiments 000 00000000	Conclusion 000	References O
Urban Area Experiments			

	Experiments 000 00000000	Conclusion 000	References 0
Urban Area E×periments			

	Experiments 000 00000000	Conclusion 000	References 0
Urban Area E×periments			

	Experiments 000 00000000	Conclusion 000	References 0
Urban Area Experiments			

	Experiments 000 00000000	Conclusion 000	References O
Urban Area Experiments			

	Experiments 000 00000000	Conclusion 000	References O
Urban Area E×periments			

GPS module is used to fetch latitude and longitude, while other information are given by the RPi4 SoC.

Note: The track is also recorded by an independent smartphone in the car, as redundancy.

C. MONIÈRE

Conclusion 000

Two experiments made:

- Blue track:
 - 15/04/2022,
 - receiver's antenna is disposed on a ground plane,
 - GPS module failed ...
- Ø Magenta track:
 - 30/05/2022,
 - receiver's antenna is plugged directly on the radio device,

- transmitter antenna was damaged,
- everything else was fine.

Conclusion 000

First Experiment

- Locations retrieved from the time extracted from the frames crossed with the time-stamps of the smartphone GPS data,
- locations are coherent with the live tracking done by phone during the experiment,
- a maximum range of up to 1 km has been achieved.

C. MONIÈRE

Conclusion 000

Second Experiment

- Locations directly extracted from frames and frames logged by the transmitter,
- detection data are also logged,
- a maximum range of up to 500 m, expected due too antennas poorer quality.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

C. MONIÈRE

Experiments

Conclusion 000

Second Experiment: Frame examples

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < で 16/22

C. MONIÈRE

Experiments

Conclusion 000

Second Experiment: Frame examples

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < で 16/22

C. MONIÈRE

CONTEXT 00 <u>Urban Area</u> Experiments Experiments

Conclusion 000

Second Experiment: Frame examples

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 - のへで 16/22

C. MONIÈRE

Experiments

Conclusion 000

Second Experiment: Frame examples

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < で 16/22

C. MONIÈRE

 CONTEXT
 EXPERIMENTS
 CONCLUSION
 References

 80
 000
 000
 0

1 km .5 km

Range difference are related to the antennas.

Thus, a lower bound for the range of 500 m can be defined.

For a consumption lower than 1 μ J per information bit, it is promising.

Transmitter power have been measured to 4 dBm when

transmitting a QCSP frame for the chosen settings, and for the given data rate. a frame takes 30 ms to be emitted.

Overall ranges

EXPERIMENTS 000 000000000	Conclusion ●00	References 0

It Just WorksTM

C. MONIÈRE

- A full real time prototype is ready,
- not the sexiest (hybrid, not fully embedded, MATLAB)
- but already good enough to draw attention.
- Bonus: logged data already allow further explorations.

C. MONIÈRE

Conclusion

- A full real time prototype is ready,
- not the sexiest (hybrid, not fully embedded, MATLAB)
- but already good enough to draw attention.
- Bonus: logged data already allow further explorations.

C. MONIÈRE

Futur Points of Interest

 \rightarrow A retro-engineered LoRa-like communication stack will be tested following the same protocol, to make comparisons.

 \rightarrow The hardware detector is nearly there (and can theoretically achieve throughput up to 200MChip/s, with the resources).

 \rightarrow TO CHECK: QCSP reception seems to be more resilient to saturation than (for example) LoRa-like transmissions.

References

- Michael Fingeroff. High-Level Synthesis Blue Book. New Jersey: Xlibris Corporation, 2010. ISBN: 978-1-4500-9724-6 978-1-4500-9723-9.
- [2] "IEEE Std 802.15.4-2020, IEEE Standard for Low-Rate Wireless Networks". In: (May 2020), p. 799.
- [3] Camille Monière et al. "Time Sliding Window for the Detection of CCSK Frames". In: *IEEE Workshop on Signal Processing Systems (SiPS'2021)*. Combria, Portugal, Oct. 2021.
- [4] OpenStreetMap. https://www.openstreetmap.org/copyright.
- [5] Kassem Saied. "Quasi-Cyclic Short Packet (QCSP) Transmission for IoT". Theses. Université Bretagne Sud, Mar. 2022.
- [6] Xilinx. Vivado Design Suite User Guide: High-Level Synthesis (UG902). 2019.

Thank you, have you any question?

<□ ▶ < @ ▶ < E ▶ < E ▶ ● ● の へ ?2/22

C. MONIÈRE