Weighted Coherent Detection of QCSP frames

27/03/2023
Kassem Saied ${ }^{1,2}$, Luis Camacho ${ }^{3}$, Emmanuel Boutillon ${ }^{1}$
${ }^{1}$ Lab-STICC, Université Bretagne Sud, Lorient France Libanese International University, Beyrouth, Liban ${ }^{2}$ Universidad nacional de Ingeneria, Lima, Peru.

Lab-STICC

UNIVERSIDAD NACIONAL DE INGENIERİA

The QCSP project has been funded by the french
ANR under grant n° ANR-19-CE25-0013-01

Massive loT: paradigm shifts

10 users sending 1 Mbits vs 1 Millions user sending 10 bits ?
=> Only solution: suppress coordination... and accept collisions.

Classical frame (very) inefficient for small payload
Header

Data	Redondancy	
	Header, Data and Redundancy should be merged.	
	Joint Header, Data and Redondancy	Saved bandwidth

Big bet: new waveform for IoT for low cost sensors, unsupervised network

From space to earth

> Cyclic-Code Shift Keying (CCSK) used in Quasi-Zenith Satellite system (Japanese GPS enhancement system). 2003 [1]

$>$ Non-binary error correcting codes (NB-ECC) used in BeiDou (Chinese GPS-like system) 2017 [2].

QCSP Approach: CCSK modulation and NB-code association

[^0]
Cyclic Code Shift Keying modulation

$P_{0}=11101000+$ BPSK modulation, roll-off factor $0.35, q=8$

- CCSK modulation:
- $\mathrm{P}_{\mathrm{O}}=11101000$
- $\mathrm{P}_{1}=01110100$
- $P_{2}=00111010$
- $P_{3}=00011101$
- $P_{4}=10001110$
- $\mathrm{P}_{5}=01000111$
- $P_{6}=10100011$
- $\mathrm{P}_{7}=11010001$

Binary message : 011001100
Make 3-uplet symbols: $(011)_{2}(001)_{2}(100)_{2}$ Take decimal value: 31
Associate CCSK symbol $\quad \mathrm{P}_{3} \quad \mathrm{P}_{1} \quad \mathrm{P}_{4}$ Send => 000111010111010010001110

QCSP frame structure $\left(q=2^{m}\right)$

- The frame is composed of N segments of CCSK sequence (or symbol)

Demodulation of CCSK frame in complex noise

Correlation between each of the received symbols Y and the q CCSK sequences.

CCSK sequences
Complex noise

$$
L(a)=\operatorname{Real}\left(\sum_{k=0}^{q-1} Y(k) P_{a}(k)\right)
$$

$$
L(19)=\operatorname{Real}\left(\sum_{k=0}^{q-1}\left(P_{19}(k)+w(k)\right) P_{19}(k)\right)=q+W
$$

Demodulation with phase offset

Effect of Doppler of local oscillators mismatch

$$
\widehat{L}(a)=\left|\sum_{k=0}^{q-1} Y(k) P_{a}(k)\right|
$$

Phase and/or frequency offset require non-coherent demodulation.

Objective

Developing blind detection and self-synchronization algorithms for achieving correct preamble-less short packet reception at very low SNRs.

\rightarrow Aiming to maximize the overall probability is achieved by maximizing the weakest probability:

$$
\operatorname{Max}\left(\min \left(\mathcal{P}_{d}, \mathcal{P}_{s}, \mathcal{P}_{c}\right)\right)
$$

Detection in a glance

Hypothese:
frame start here
When synchronised: sum max correlation $=\mathrm{Nq}=6 \times 8=48$

When not synchronised: sum max correlation $=4+4+4+4+4=20$

Detection legacy method: Non coherent sum of decoded symbols.

$$
\begin{gathered}
\mathrm{N}=5, \mathrm{q}=64, \text { no noise } \\
\max \left(\left|L_{k}\right|\right)
\end{gathered}
$$

$$
S_{\mathrm{k}}(\mathrm{Y})=\sum_{n=0}^{4} \max \left(\left|\boldsymbol{L}_{\boldsymbol{k}+64 \boldsymbol{n}}\right|\right)
$$

Detection legacy method: Non coherent sum of decoded symbols.

$N=5, q=64$, no noise
$\max \left(\left|L_{k}\right|\right)$

$$
S_{\mathrm{k}}(\mathrm{Y})=\sum_{n=0}^{4} \max \left(\left|\boldsymbol{L}_{\boldsymbol{k}+64 n}\right|\right)
$$

Detection

Impact of the frequency offset

Score values in 3D grid where $\mathrm{N}=60, q=64$ and a frequency offset.

Detection if score > Threshold (trade-off miss-detection vs false alarm

Theoritical result

Theoretical performance [1]: $\mathrm{P}_{\mathrm{md}}=\left(\mathrm{P}_{\mathrm{fa}}, q, n\right)$, confirmed by Monte-Carlo simulation.

[1] K. Saied, A. Al Ghouwayel, E. Boutillon, «Short Frame Transmission at Very Low SNR by Associating CCSK Modulation with NB-Code », IEEE Transactions on Wireless Communications, 2022.

Practical results (Software radio)

+ Experimentation mobile and maritime channels

Idea: use coherent summation

Max corellation rotated though the symbols
=> coherent summation through different hypothesis of rotation speed
=> In signal processing it is called «Fast-Fourier Transform »

Problem due to symbol errors

When all symbol decisions correct, the rotation pattern appears clearly and can be used for efficient detection.
 attenuated and good one amplified, distorted (but still usefull) rotation pattern appears.

Problem: defined weighting factor α_{n} for the $n^{\text {th }}$ symbols

Weighting factor of decision

Joint coherent/non-coherent detection

Porb miss detection indicated on the lines.
Prob false alarm constant at 10^{-6}

Probability of miss detection: $4 \times 10^{-4}(\mathrm{NC})=>10^{-4}(\mathrm{C})=>4 \times 10^{-6}(\mathrm{NC}+\mathrm{C})$

Conclusion

- About QCSP frames:
\diamond Close to theoretical limit in Gaussian channel
\diamond Proved efficient in several channels
\diamond Real-time software receiver.
- Take away on the paper

\diamond Joint coherent/non-coherent detection gives 0.5 dB of detection improvement.

Current/future experimentations

qcsp.univ-ubs.fr/

Thank you!

[^0]: [1]: G. M. Dillard et al. "Cyclic code shift keying: a low probability of intercept communication technique". In: IEEE
 Transactions on Aerospace and Electronic Systems 39.3 (2003), pp. 786-798.
 [2]: China Satellite Navigation Office, BeiDou Navigation Satellite System, Signal In Space, Interface Control Document, Open Service Signals, Dec. 2017
 http://en.beidou.gov.cn/SYSTEMS/Officialdocument/201806/P020180608525871869457.pdf

