AI4CODE

ics in in cois in^{40}
 C4-Sequences: Rate Adaptive Coded Modulation for Few Bits Message

ANR-19-CE25-0013-01 ANR-21-CE25-0006

Océanopolis, Brest, 7 September 2023

Emmanuel Boutillon

Prof. UBS

Cédric Invited Prof. IMT-Atlantique
Marchand
Research
Engineer

Alexandru Oltenau Assitant Prof.

Outline

Summary of Marchand's presentation

"Sting art" sequences

C4 sequences

Geometrical shaping

Coded modulation

Binary Cyclic Code Shift Keying modulation

$P_{0}=11101000+$ BPSK modulation, $q=8, m=3$ bits per CCSK symbol.

- CCSK modulation:
- $P_{0}=11101000$
- $P_{1}=01110100$
- $P_{2}=00111010$
- $P_{3}=00011101$
- $P_{4}=10001110$
- $\mathrm{P}_{5}=01000111$
- $P_{6}=10100011$
- $P_{7}=11010001$

Code rate $3 / 8$

Binary message : 011001100 Make 3-uplet symbols: $(011)_{2}(001)_{2}(100)_{2}$ Take decimal value: 314 Associate CCSK symbol $\quad P_{3} \quad P_{1} \quad P_{4}$ Send => 000111010111010010001110

[1] G.M. Dillard et al. « Cyclic code shift keying: a low probability of intercept communication technique." IEEE Trans. on Aerospace and Electronic Systems, 39(3):786-798, 2003.

More about CCSK

Element of the coding sequence are called "chip"
CCSK not restricted to BPSK modulation [1]:
8-PSK, 16-QAM, 64-APSK can be used to encode the chips.
Truncate the CCSK sequence to increase the code rate [1]:
Example: send only first I = 5 chips, instead of the whole sequence. Binary message: 011001100 Make 3-uplet symbols: $(011)_{2}(001)_{2}(100)_{2}$ Take decimal value: $\quad 3 \quad 1 \quad 4$ Associate CCSK symbol $\begin{array}{llll}P_{3} & P_{1} & P_{4}\end{array}$ Send $=>000111010111010010001110$

- => 00011-- 01110---10001- -

Code rate 3/5 • => 000110111010001
[1] G.M. Dillard et al. «Cyclic code shift keying: a low probability of intercept communication technique." IEEE Trans. on Aerospace and Electronic Systems, 39(3):786-798, 2003.

What is a good CCSK sequence?

- Notation: $\mathbf{x}=(x(0), x(1), \ldots, x(q-1))$ a complex CCSK sequence with $\|\mathbf{x}\|^{2}=\mathrm{q}$ (energy of 1 in average per chip).
- From $\mathbf{x}=>$ define a codebook of q sequences $\mathbf{x}_{\mathrm{a}}=(x(a) x(a+1), \ldots, x(a+q-1))$ (here, left rotation, with index operation done modulo q).

Minimum distance of the code: $\mathrm{D}_{\mathrm{m}}{ }^{2}=\min _{\mathrm{a} \neq \mathrm{b}}\left\|\mathbf{x}_{\mathrm{a}}-\mathbf{x}_{\mathrm{b}}\right\|^{2}$

$$
\left\|\mathbf{x}_{\mathrm{a}}-\mathbf{x}_{\mathrm{b}}\right\|^{2}=\left\|\mathbf{x}_{\mathrm{a}}\right\|^{2}+\left\|\mathbf{x}_{\mathrm{b}}\right\|^{2}-2 \operatorname{Real}\left(<\mathbf{x}_{\mathrm{a}}, \mathbf{x}_{\mathrm{b}}>\right) .
$$

Thus: $\left.D_{m}^{2}=2 q-2 \max \left(\operatorname{Real}\left(<\mathbf{x}_{\mathrm{a}}, \mathbf{x}_{\mathrm{b}}>, \mathrm{a} \neq \mathrm{b}\right).\right)\right)$

What's about truncated CCSK sequences?

- How evolve the minimum distance when truncated sequences are used?
- Convenient to use a normalized distance, i.e., a distance per chip, i.e.

$$
D_{m}(l)^{2}=\frac{1}{l} \min \left(\left\|\mathrm{x}_{a}^{l}-\mathrm{x}_{\mathrm{b}}^{1}\right\|^{2}, a \neq b\right)
$$

- With x_{a}^{l} the length-/ truncated sequence of x_{a}, i.e.,

$$
\mathrm{x}_{a}^{l}=(x(a), x(a+1), \ldots, x(a+l-1))
$$

Evolution of $D_{m}(I)$ as a function of the truncation length?

- It is possible to do better?

Outline

Summary of Marchand's presentation

"Sting art" sequence

C4 sequences

Geometrical shaping

Coded modulation

Optimization of NB-CCSK sequences

- Multi-objective optimization problem: maximize $\mathrm{D}_{\mathrm{I}}^{2}$ for $\mathrm{I}=$ $1, \ldots, q$.

Machine Learning Technique

Mathematical
Formalism

First attempts

Actual situation

- Set of optimal solutions obtained.

Set of solutions with $D_{m}(I)=2$ for several values of I.

- $\pi(\mathrm{i}+1)=\bmod (5 \pi(\mathrm{i})+1, \mathrm{q})$

Optimal for $\mathrm{I}=\mathrm{q} / 4, \mathrm{q} / 2,3 \mathrm{q} / 4$ and q . Always above Binary and ZC sequences...

Outline

Summary of Marchand's presentation

Optimization of NB-CCSK sequences

- Multi-objective optimization problem: maximize $\mathrm{D}_{\mathrm{I}}^{2}$ for $\mathrm{I}=$ $1, \ldots, q$.

Machine Learning Technique

Mathematical
Formalism

First attempts

C4-sequences

- Set of optimal solutions obtained.

What does C4 means?

- Constellation
- Circular

$$
\circ \text { (auto)-Correlation } \quad \sum_{n=0}^{q-1} x(n) x(n+\tau)^{\prime}
$$

- Cross

Mathematical recipe for C4-sequence

Generation of a C4 sequence of length $q=4 p$ in 3 steps.

1) Select randomly $q / 4$ points on a circle of radius $r=4 \sqrt{q / 4}$

2) From length $q / 4$ vector S, generate length q vector \mathbf{X} as
```
Function x = random_C4(q);
% Step 1
theta = 2*pi*rand(1,q/4);
S = 4*sqrt(q/4)*exp(1i*theta);
% Step 2
X = kron(S, [0 0 0 1]);
% Step 3
x = ifft(X);
```

 \(X=[0000 S(0) 000 S(1) \ldots 000 S(q / 4-1)]\)
 3) Compute the Inverse Discrete Fourier Transform \mathbf{x} of $\mathbf{X}, \mathbf{x}=\operatorname{IDFT}(\mathbf{X})$.

Experimentation Results $\mathbf{q}=64$

Clockwise rotation

Clock-wise and Anti-clockwise C4 sequences

$$
\mathrm{q}=64
$$

theta1 $=\operatorname{rand}(1, q / 4)$;

$$
\text { theta2 = rand }(1, q / 4) ;
$$

S1 $=4^{*} \operatorname{sqrt}(\mathrm{q} / 4) * \exp \left(2 * \mathrm{pi} * 1 i^{*}\right.$ theta1);
X = kron(S1, [00001 1]);
$\mathrm{Y}=\operatorname{kron}\left(\mathrm{S} 2,\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]\right.$;
X = ifft(X);
Clock-wise C4 sequence
$\mathrm{y}=\mathrm{ifft}(\mathrm{Y})$;
Anti-clockwise C4 sequence

Theorem: if x is a clockwise C4-sequence and y and anticlockwise C4-sequence, then, for all $\mathrm{a}, \mathrm{b},\left\langle\mathrm{x}_{\mathrm{a}}, \mathrm{y}_{\mathrm{b}}\right\rangle=0$.
i.e., the two sets of sequences are orthogonal.

Properties of C4 sequences

- Invariant by a $\pi / 2$ rotation (4-fold symmetry)
- $x\left(n+\frac{q}{4}\right)=j^{-c} x(n), \mathrm{c}=1$ clockwise, $\mathrm{C}=-1$, anticlockwise.
- $R_{x}(\tau)=j^{-k c} q$, when $\tau=\frac{k q}{4}, 0$ otherwise
- $D_{l}\left(k \frac{q}{4}\right)=2, k=1,2,3,4$
- From a length q C4 sequence, it is possible to generate a set of q lengths sequence of length $\mathrm{p}=\mathrm{q} / 4\left\{\mathrm{x}_{a}^{p}\right\}, a=$ $0,1, \ldots, q$ verifying

$$
\left\|x_{a}^{p}-x_{b}^{p}\right\|^{2} \geq q / 2 \text { if } a \neq b
$$

Outline

Summary of Marchand's presentation

(C) Coded modulation

Shaping of C4-Constellations

- String art sequences are particular case of C4sequences.
- By the selection of vector θ, flexibility to shape the C4-sequence.
$\diamond=>$ points on unit circle
$\diamond=>$ points on 2 or more circles
$\diamond=>$ Optimization for a given criteria
\diamond Mutual information (MI) of the constellation alone in AWGN channel.

$q=64$ C4-constellation, SNR of 10 dB

Capacity: 3.4594 bit/s/Hz
MI: 3.4192 bit/s/Hz
98.8379 \% of capacity

$q=64$ C4-constellation, SNR of 5 dB

Capacity: 2.0574 bit/s/Hz
MI: $2.0537 \mathrm{bit} / \mathrm{s} / \mathrm{Hz}$
99.8227 \% of capacity

$q=64$ C4-constellation, SNR of 0 dB

Capacity: $1.0000 \mathrm{bit} / \mathrm{s} / \mathrm{Hz}$
MI: 0.9998 bit/s/Hz
99.998 \% of capacity

$q=64$ C4-constellation, SNR of -5 dB

Capacity: $0.396409 \mathrm{bit} / \mathrm{s} / \mathrm{Hz}$
MI: 0.396408 bit/s/Hz 99.999891 \% of capacity

$q=256$ C4-constellation, SNR of 15 dB

Capacity: 5.0278 bit/s/Hz
MI: 4.9867 bit/s/Hz
99.18238184 \% of capacity

Outline

Summary of Marchand's presentation

(85) "Sting art" sequence

Geometrical shaping

Coded modulation

Proposed coded modulation ($q=2^{m}$)

- Global spectral efficiency: $\frac{m R}{\bar{l}} \mathrm{bit} / \mathrm{s} / \mathrm{Hz}$.

Degree 4 Parity Check over GF(64)

$q=64, m=6 \mathrm{C} 4$ sequence optimized for 5 dB of SNR

18 bits

Outer NB code: single parity over GF(64), $R=3 / 4$
Spectral efficiency: $\frac{m R}{l}=\frac{6 \times 3 / 4}{l}=\frac{9}{2 l} \mathrm{bit} / \mathrm{s} / \mathrm{Hz}$.

Finite length simulation, $q=64$, $k=120$ bits, NB-LDPC $R=1 / 3$.

FER 10^{-3}

- Finite length simulation confirmed theoretical results.

Potential applications of C4-sequences

- May be used for geometrical shaping
- May be used in multi-users environment to identify users.
- May be used, like ZC sequences, for synchronization.
- May be used for flexible rate adaptive coded modulation.

Potential extensions

- The 4 in C4 can also be the 4 optimal truncation lengths.
- Extension of C4 sequences to C3 or C5 sequences possible: in the construction process, replace

$$
\left.\left.\mathrm{Y}=\text { 4*sqrt(q/4)*kron(S, }^{0} 11000\right]\right) \text {; }
$$

by

$$
\text { Y = 5*sqrt(q/5)*kron(S, [010 } 100000]) \text {; (for example) }
$$

to create C 5 sequence with a 5 -fold symmetry

niv-ubs.fr/ https://ai4code.projects.labsticc.

Thank you!

