Rate-Adaptive Cyclic Complex Spreading Sequence for Non-Binary Decoders

ISTC 2023

Cédric Marchand Alexandru-Liviu Olteanu Emmanuel Boutillon

6 September 2023, Brest

Introduction: a solution to rate-adaptive code

- Decoder must adapt to channel conditions
 - Costly Rate-adaptive decoder architecture
 - Plenty of codes f(K, R)
 - Plenty of Modulations
 - Sub-optimal Repetition for very low rate

- Solution
 - 1 NB decoder
 optimized for 1 code rate
 - 1 Modulation
 - 1 Inner code responsible of Rate matching
 - ♦ The Punctured NB-CCSK

Example of NB-CCSK with 8-PSK

- The CCSK modulation spread a symbol $b, b \in \{0, ..., q 1\}$ on a sequence G_b defined as the circular left shift of the root sequence G_0 by *b* positions.
- A sequence of 8 chips, each chip mapped on a distinct point of a 8-PSK modulation
- o sequence G₀ = [0, 1, 2, 3, 4, 5, 6, 7]
- PSK constellation $C(i) = e^{j2\pi j i/q}, j^2 = -1$
- $C(\mathbf{G}_{0}(i)) = e^{j(2\pi \mathbf{G}_{0}(i)/q)}, j^{2} = -1$

Mapping of G₀ on 8-PSK constellation

5

6

Codeword table

	b	G _b
	0	01234567
	1	1 2 3 4 5 6 7 0
	2	23456701
	3	3 4 5 6 7 0 1 2
	4	45670123
	5	56701234
	6	67012345
⇒ I	7	70123456

Lab-STICC

Inner CCSK code: principle

Non binary symbols are in GF(q) with $m = \log_2(q)$ bits (*m* bits per symbol)

NB-CCSK: Truncation

• Truncation from *q* to *p* chips to make CCSK rate-adaptive [1][2]

• Per symbol puncturing[2] :Half symbols with p = 1, the other half with p = 2• p = 1.5, $r_i = 2/3$

5 [1] "Cyclic Code Shift Keying: A Low Probability of Intercept Communication Technique", 2003 [2] C. Marchand and E. Boutillon, "Rate-adaptive Inner Code for Non-Binary Decoders," 2021

Example: NB- CCSK mapped on 8-PSK with *p* =2

Qt

6

4

5

2 G₁

 G_0

- **G**₀=[0, 1, 2, 3, 4, 5, 7], *p*=2
- Squared Euclidian Distance between **G**₀ and **G**₁
 ♦ d(**G**₀, **G**₁)² = ||C(1) C(0)||² + ||C(2) C(1)||²
 ♦ d(**G**₀, **G**₁)² = 1,17
- Minimum squared distance of the code • $D(G) = \min_{a \neq b} \{ d(G_a, G_b)^2 \}$ • D(G)=1,17

Lab-STICC

Example NB- CCSK mapped on 8-PSK

- A permutation $\prod = [0, 1, 6, 7, 4, 5, 2, 3]$
- \circ Squared Euclidian distance between G_0 and G_1
- $d(\mathbf{G}_0, \mathbf{G}_1)^2 = ||C(1) C(0)||^2 + ||C(2) C(1)||^2$
- $\circ d(\mathbf{G}_0, \mathbf{G}_1)^2 = 4$
- $\circ D(\mathbf{G}) = \min_{a \neq b} \{ d(\mathbf{G}_a, \mathbf{G}_b)^2 \} = 4$

The sequence order greatly impact the minimum distance of the "code"

Distance and correlation metrics

$$d(\mathbf{G}_{a}^{p}, \mathbf{G}_{b}^{p})^{2} = \sum_{i=0}^{p-1} (\mathbf{G}_{a}^{p}(i) - \mathbf{G}_{b}^{p}(i))^{2}$$
$$= \sum_{i=0}^{p-1} \mathbf{G}_{a}^{p}(i)^{2} + \mathbf{G}_{b}^{p}(i)^{2} - 2\mathcal{R}(\mathbf{G}_{a}^{p}(i) \times \mathbf{G}_{b}^{p}(i)')$$

With a constellation on the unit circle, we have $\ {f G}^p_a(i)^2 = 1$ and,

$$d(\mathbf{G}_{a}^{p}, \mathbf{G}_{b}^{p})^{2} = 2p - 2\mathcal{R}(\langle \mathbf{G}_{a}^{p}, \mathbf{G}_{b}^{p} \rangle)$$

 \circ Where < a, b > is the inner product of complex sequence.

• Thus $D(G) = \min_{a \neq b} \{ d(G_a, G_b)^2 \} = 2p - 2 \max(\text{Real}(\langle G_a, G_b \rangle, a \neq b)).$

Case *p* = 2: distance table

Codewords are either orthogonal or antipodal => bi-orthogonal code

Example: NB- CCSK mapped on 8-PSK

- Normalized min distance $\overline{D} = D / p$
- Bi-orthogonal at
 - \$ p = q / 4
 \$ p = q / 2
 \$ p = 3q / 4
 \$ p = q

Can we find sequence for GF(64), GF(256), ... ?

- Try all possible permutation is O((q-1)!).
 - ♦ permutations for $q = 32 : 2,63 \times 10^{35}$
 - ♦ permutations for $q = 64 : 1,98 \times 10^{87}$
 - ♦ Permutation for q = 256 : 3,35x10⁵⁰⁴
- From observation of GF(8),
 - ♦ 4-fold rotational symmetry
 - ♦ Good result at p = q/4 implies good results at p = q/2, 3q/4and q
- Constrained symmetric shape and optimization only for *p* = *q*/4
 Solution for GF(32)

12

Example: NB- CCSK mapped on 32-PSK

• Optimization on maximizing the minimum distance for p = 8 using simulated annealing algorithm with 32-PSK.

Research process ...

n-epicycloid

n-epicycloids can also be constructed by beginning with the Diameter of a Circle, offsetting one end by a series of steps while at the same time offsetting the other end by steps *n* times as large. After traveling around the Circle once, an *n*-cusped epicycloid is produced [6].

[3] Joseph S. Madachy 'Mathematics on vacation', Charles Scribner's Sons, p219-224, 1966

4 cusps epicycloid

- Sequence construction
 - ♦ **G**₀(0) = 0
 - ♦ $G_0(i+1) = mod(G_0(i)*(cusps+1)+1, q)$
- Bi-orthogonal at
 - \$p = q / 4\$
 \$p = q / 2\$
 \$p = 3q / 4\$

 $\diamond p = q$

Cusp: a pointed end or part where two curves meet

4 cusps hypocycloid or « astroid »

- From the same book [3] • $G_0(0)=0$ • $G_0(i+1)=mod(-G_0(i)*(cusps+1), q)$
- Same bi-orthogonal properties

CCSK sequence for 64-QAM constellation

• Use of a QAM constellation \diamond Better min distance for p = 1 Permutation Optimization Multi-objective simulated annealing $\Diamond p = 2$ $\Rightarrow p = q/4$ Rotation symmetry • Nearly bi-orthogonal

NB-CCSK: Zadoff-Chu sequence

- Zadoff-Chu (ZC) sequence
 - ♦ $C(i) = e^{j(2\pi G_0(i)/q)}$
 - $\diamondsuit \mathbf{G}_0(\mathbf{i}) = \mathrm{mod}(\mathbf{i}^2, \mathbf{q})$
- Can be considered as a NB-CCSK sequence
- When cyclically shifted, the resulting ZC sequences are uncorrelated with one another.

Minimum distance comparison

- EMLS CCSK
 - Binary CCSK
 - Extented Maximum Length
 Sequence
- For p = 64
 - D(Zadoff-Chu) = D(4-Cusp)
- For 2
 - D(4-Cusp)>D(QAM)
- For p = 1
 - ♦ 64-QAM CCSK outperform the 4-Cusp CCSK

FER of 64-QAM and 64-PSK TCCSK

- NB-LDPC
 - k=20 symbols (120 bits)
 - ◊ r_o=1/3
 ◊ n_m=20, n_{op}=25
- 5G LDPC decoder
 \$Graph1
 - ♦ k=120 bits

Spectral efficiency of NB-CCSK with 256-QAM constellation

- NB-LDPC
 - k = 15 symbols (120 bits)
 - ♦ $r_0 = 2/3$
 - ♦ $n_m = 70, n_{op} = 80$
- o 5G LDPC

♦ Graph1

- ♦ k = 120 bits
- For p=256 (not shown)
 - ♦ Spectral efficiency = 0.02 bits/s/Hz
 - ♦ SNR CCSK=-15.5 dB
 - 24 SNR Shannon limit = -18.3 dB

Conclusion

- Rate-adaptive cyclic complex spreading sequence
 - 4 Cusps family
 - \diamond Bi-orthogonal at p = q, 3q / 4, q / 2, q / 4
 - ♦ Rate adaptive inner code for NB-Decoder
 - ♦ Good FER performance
 - Wide range of code rates down to very low SNR

- Extension of this work
 - Tomorrow Special Session on Short Codes and Their Applications
 - E. Boutillon "C4-Sequences: Rate Adaptive Coded Modulation for Few Bits Message"

Rate-Adaptive Cyclic Complex Spreading Sequence for Non-Binary Decoders

• Thank you for your attention

