Rate-Adaptive Cyclic Complex Spreading Sequence for Non-Binary Decoders

ISTC 2023

Cédric Marchand
Alexandru-Liviu Olteanu Emmanuel Boutillon

6 September 2023, Brest

Introduction: a solution to rate-adaptive code

- Decoder must adapt to channel conditions
\diamond Costly Rate-adaptive decoder architecture
\diamond Plenty of codes f(K, R)
\diamond Plenty of Modulations
\diamond Sub-optimal Repetition for very low rate
- Solution
$\diamond 1$ NB decoder \diamond optimized for 1 code rate
$\diamond 1$ Modulation
$\diamond 1$ Inner code responsible of Rate matching
\diamond The Punctured NB-CCSK

Example of NB-CCSK with 8-PSK

- The CCSK modulation spread a symbol $b, b \in\{0, \ldots, q-1\}$ on a sequence \mathbf{G}_{b} defined as the circular left shift of the root sequence \mathbf{G}_{0} by b positions.
- A sequence of 8 chips, each chip mapped on a distinct point of a 8 -PSK modulation
- sequence $\mathbf{G}_{0}=[0,1,2,3,4,5,6,7]$
- PSK constellation $C(i)=e^{i 2 \pi j i q}, j^{2}=-1$
- $C\left(\mathbf{G}_{0}(i)\right)=e^{j\left(2 \pi \mathbf{G}_{0}(i) / q\right)}, j^{2}=-1$

Mapping of G_{0} on 8-PSK
constellation

Inner CCSK code: principle

Non binary symbols are in $\operatorname{GF}(q)$ with $m=\log _{2}(q)$ bits (m bits per symbol)

Cins

NB-CCSK: Truncation

- Truncation from q to p chips to make CCSK rate-adaptive [1][2]

$r_{i}=1 / 8$

$r_{i}=1 / 2$

$$
r_{i}=1
$$

- Per symbol puncturing[2] :Half symbols with $p=1$, the other half with $p=2$
$\diamond p=1.5, r_{i}=2 / 3$

Example: NB- CCSK mapped on 8-PSK with $p=2$

- $\mathrm{G}_{0}=[0,1,2,3,4,5,7], p=2$
- Squared Euclidian Distance between G_{0} and G_{1}
$\diamond \mathrm{d}\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right)^{2}=\|C(1)-C(0)\|^{2}+\|C(2)-C(1)\|^{2}$
$\diamond \mathrm{d}\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right)^{2}=1,17$
- Minimum squared distance of the code
$\diamond \mathrm{D}(\mathrm{G})=\min _{\mathrm{a} \neq \mathrm{b}}\left\{\mathrm{d}\left(\mathrm{G}_{\mathrm{a}}, \mathrm{G}_{\mathrm{b}}\right)^{2}\right\}$
$\diamond \mathrm{D}(\mathrm{G})=1,17$

b	\mathbf{G}_{b}
0	$0 1 \longdiv { 3 4 5 6 7 }$
1	123445670
2	23457
3	3456
4	4567
5	5671234
6	67 - 2345
7	7023450

C!rs

Example NB- CCSK mapped on 8-PSK

- A permutation $\Pi=[0,1,6,7,4,5,2,3]$
- Squared Euclidian distance between G_{0} and G_{1}
- $\mathrm{d}\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right)^{2}=\|C(1)-C(0)\|^{2}+\|C(2)-C(1)\|^{2}$
- $\mathrm{d}\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right)^{2}=4$
- $\mathrm{D}(\mathrm{G})=\min _{\mathrm{a} \neq \mathrm{b}}\left\{\mathrm{d}\left(\mathrm{G}_{\mathrm{a}}, \mathrm{G}_{\mathrm{b}}\right)^{2}\right\}=4$

The sequence order greatly impact the minimum distance of the "code"

b	\mathbf{G}_{b}
0	$0 1 \longdiv { 7 4 5 2 }$
1	$16>453$
	67 2
2	6745
3	7452
4	4523
5	523016
6	23 674
	$30 \text { 67452 }$

Distance and correlation metrics

$$
\begin{aligned}
d\left(\mathbf{G}_{a}^{p}, \mathbf{G}_{b}^{p}\right)^{2} & =\sum_{i=0}^{p-1}\left(\mathbf{G}_{a}^{p}(i)-\mathbf{G}_{b}^{p}(i)\right)^{2} \\
& =\sum_{i=0}^{p-1} \mathbf{G}_{a}^{p}(i)^{2}+\mathbf{G}_{b}^{p}(i)^{2}-2 \mathcal{R}\left(\mathbf{G}_{a}^{p}(i) \times \mathbf{G}_{b}^{p}(i)^{\prime}\right)
\end{aligned}
$$

With a constellation on the unit circle, we have $\mathbf{G}_{a}^{p}(i)^{2}=1$ and,

$$
d\left(\mathbf{G}_{a}^{p}, \mathbf{G}_{b}^{p}\right)^{2}=2 p-2 \mathcal{R}\left(\left\langle\mathbf{G}_{a}^{p}, \mathbf{G}_{b}^{p}\right\rangle\right)
$$

- Where $<a, b>$ is the inner product of complex sequence.
- Thus $\mathrm{D}(\mathrm{G})=\min _{\mathrm{a} \neq \mathrm{b}}\left\{\mathrm{d}\left(\mathrm{G}_{\mathrm{a}}, \mathrm{G}_{\mathrm{b}}\right)^{2}\right\}=2 \mathrm{p}-2 \max \left(\operatorname{Real}\left(\left\langle\mathrm{G}_{\mathrm{a}}, \mathrm{G}_{\mathrm{b}}\right\rangle, \mathrm{a} \neq \mathrm{b}\right)\right)$.

Case $p=2$: distance table

Codewords are either orthogonal or antipodal => bi-orthogonal code
Cnis

Example: NB- CCSK mapped on 8-PSK

- Normalized min distance
$\diamond \bar{D}=D / p$
- Bi-orthogonal at
$\diamond p=q / 4$
$\diamond p=q / 2$
$\diamond p=3 q / 4$
$\diamond p=q$

Can we find sequence for GF(64) , GF(256), ... ?

- Try all possible permutation is $O((q-1)!)$.
\diamond permutations for $q=32: 2,63 \times 10^{35}$
\diamond permutations for $q=64: 1,98 \times 10^{87}$
\diamond Permutation for $q=256: 3,35 \times 10^{504}$
- From observation of GF(8),

\diamond 4-fold rotational symmetry
\diamond Good result at $p=q / 4$ implies good results at $p=q / 2,3 q / 4$ and q
- Constrained symmetric shape and optimization only for $p=q / 4$
\diamond Solution for GF(32)

Example: NB- CCSK mapped on 32-PSK

- Optimization on maximizing the minimum distance for $p=8$ using simulated annealing algorithm with 32-PSK .

Research process ...

- After some search, we found this nice sequence for $q=64$

13

n-epicycloid

- n-epicycloids can also be constructed by beginning with the Diameter of a Circle, offsetting one end by a series of steps while at the same time offsetting the other end by steps n times as large. After traveling around the Circle once, an n-cusped epicycloid is produced [6].

OVER 150 DIAGRAMS

Lab-STICC
cors

4 cusps epicycloid

- Sequence construction

$$
\begin{aligned}
& \diamond \mathbf{G}_{0}(0)=0 \\
& \diamond \mathbf{G}_{0}(\mathrm{i}+1)=\bmod \left(\mathbf{G}_{0}(\mathrm{i})^{*}(\text { cusps }+1)+1, \mathrm{q}\right)
\end{aligned}
$$

- Bi-orthogonal at
$\diamond p=q / 4$
$\diamond p=q / 2$
$\diamond p=3 q / 4$
$\diamond p=q$

Cusp: a pointed end or part where two curves meet

4 cusps hypocycloid or « astroid »

- From the same book [3]
$\diamond \mathbf{G}_{0}(0)=0$
$\diamond \mathbf{G}_{0}(\mathrm{i}+1)=\bmod \left(-\mathbf{G}_{0}(\mathrm{i}) *(\mathrm{cusps}+1), \mathrm{q}\right)$

[3] Joseph S. Madachy 'Mathematics on vacation',Charles

CCSK sequence for 64-QAM constellation

- Use of a QAM constellation
\diamond Better min distance for $p=1$
- Permutation Optimization
\diamond Multi-objective simulated annealing

$$
\begin{aligned}
& \diamond p=2 \\
& \diamond p=\mathrm{q} / 4
\end{aligned}
$$

\diamond Rotation symmetry

- Nearly bi-orthogonal

NB-CCSK: Zadoff-Chu sequence

- Zadoff-Chu (ZC) sequence
$\diamond C(\mathrm{i})=\mathrm{e} j\left(2 \pi \mathrm{G}_{0}(\mathrm{i}) / \mathrm{q}\right)$
$\diamond \mathbf{G}_{0}(\mathrm{i})=\bmod \left(\mathrm{i}^{2}, \mathrm{q}\right)$
- Can be considered as a NB-CCSK sequence
- When cyclically shifted, the resulting ZC sequences are uncorrelated with one another.

ZC sequence
 q-psk modulation

Minimum distance comparison

- EMLS CCSK
\diamond Binary CCSK
\diamond Extented Maximum Length Sequence
- For $p=64$
$\diamond D($ Zadoff-Chu $)=D(4$-Cusp $)$
- For $2<p \leq 64$
$\diamond D(4-C u s p)>D(Q A M)$
- For $p=1$
\diamond 64-QAM CCSK outperform the 4-Cusp CCSK

FER of 64-QAM and 64-PSK TCCSK

- NB-LDPC
$\diamond \mathrm{k}=20$ symbols (120 bits)
$\diamond r_{0}=1 / 3$
$\diamond \mathrm{n}_{\mathrm{m}}=20, \mathrm{n}_{\mathrm{op}}=25$
- 5G LDPC decoder
\diamond Graph1
$\diamond \mathrm{k}=120$ bits

Spectral efficiency of NB-CCSK with 256-QAM constellation

- NB-LDPC
$\diamond \mathrm{k}=15$ symbols (120 bits)
$\diamond r_{0}=2 / 3$
$\diamond \mathrm{n}_{\mathrm{m}}=70, \mathrm{n}_{\mathrm{op}}=80$
- 5G LDPC
\diamond Graph1
$\diamond \mathrm{k}=120$ bits
- For p=256 (not shown)
\diamond Spectral efficiency $=0.02$ bits $/ \mathrm{s} / \mathrm{Hz}$
\diamond SNR CCSK=-15.5 dB
24 SNR Shannon limit $=-18.3 \mathrm{~dB}$

Conclusion

- Rate-adaptive cyclic complex spreading sequence
$\diamond 4$ Cusps family
$\diamond \mathrm{Bi}$-orthogonal at $p=q, 3 q / 4, q / 2, q / 4$
\diamond Rate adaptive inner code for NB-Decoder \diamond Good FER performance
\diamond Wide range of code rates down to very low SNR
- Extension of this work
\diamond Tomorrow Special Session on Short Codes and Their Applications
\diamond E. Boutillon "C4-Sequences: Rate Adaptive Coded Modulation for Few Bits Message"

Rate-Adaptive Cyclic Complex Spreading Sequence for Non-Binary Decoders

- Thank you for your attention

- Questions \& Answers

Lab-Sticc

