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Executive Summary

Work Package 2 (WP2) of the QCSP project is concerned with the proposition and evaluation
of algorithms to achieve an efficient detection and synchronization of the CCSK-modulated Frame
using the soft output provided to the decoder and exploiting the particular structure of the frame.
The CCSK modulation is also studied in a 3GPP framework to evaluate the potential of such a
modulation if included in a traditional 3GPP system.

The goal of Task 2.5 is to find the relevant LTE-M use cases and evaluate them. The CCSK
modulation properties could be useful for some 3GPP communications scenarios. The task should
define them and assess the usage of the CCSK in such context. The combination of the CCSK
with the usual 3GPP modulation OFDM is studied. The tasks of detection, time and frequency
synchronizations, channel estimation and equalization, and the final demodulation are investigated.

This deliverable is organized as follows:

Section 1 introduces the Zadoff-Chu sequences that are used as the root CCSK sequence. These
sequences are already used in 4G and 5G systems and expose several interesting properties.

Section 2 lists the mathematical tools that are employed in this report.

Section 3 provides some details on (inverse) discrete Fourier transforms of the Zadoff-Chu se-
quences. Moreover, some interesting properties are described.

Section 4 describes the combination of OFDM and CCSK modulations. After some reminders
on OFDM and CCSK, the chapter proposes some combining schemes for single or multiple CCSK
symbols per OFDM symbol, associated with a demodulation method. The performances are assessed,
and some insights on complexity and feasibility aspects are provided.

Section 5 investigates the case of flat and frequency selective fading channel. The CP-OFDM
modulation is described, along with state of the art channel estimation, interpolation and equalization
algorithms. The combination with CCSK and CP-OFDM is studied and the performance of the system
is compared in different channel condition. An emphasis on channel time and frequency diversity is
proposed.

Section 6 describes two novels algorithms for channel estimation and equalization, and demodula-
tion. Based on properties of the CCSK OFDM frame, the DFTLink and GLAD algorithms provides
interesting results and pave the way to further interesting studies.

Section 7 focuses on the impact of time and frequency synchronization errors on the CCSK OFDM
frame.

Page 8 of (98) ©QCSP, September 2023
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1 Definition and Properties of Zadoff-Chu Sequences

1.1 Definition

The general form of a Zadoff-Chu (ZC) sequence is defined as:

Definition 1
xu[n] = exp

(
−j πun(n+ cN + 2q)

N

)
, (1.1)

with N ∈ N∗; n ∈ N and 0 ≤ n < N; u ∈ N∗, u < N and gcd(u,N) = 1 (see section 2.1);
cN ≡ N mod (2); q ∈ Z.

The variable u is the index of the ZC sequence and N is the length of the sequence. Usually, q = 0
so that the definition simplifies to:

xu[n] =

 exp
(
−j πun(n+1)

N

)
, for N odd,

exp
(
−j πun2

N

)
, for N even.

(1.2)

A remark on the congruence notation x ≡ r mod (N). This equation implies that x and r have the
same remainder when divided by N. In this document, we will usually make r equal to the remainder,
so that x mod (N) = r and equivalently note x ≡ r mod (N).

1.2 General Properties

The ZC sequences were formally defined in the paper of Chu [1]. They have several interesting
properties; some of them are described hereafter. The following properties apply for even and odd
sequence length1.

1. While they are originally defined as finite sequences (0 ≤ n ≤ N − 1), they can be extended as
N-periodic, infinite sequences:

xu[n] = xu[n+ kN], ∀k ∈ Z (1.3)

With this property, the ZC sequence can be extended to n ≥ N (or even n < 0).
Consequently, the index n is usually defined modulo N allowing a more flexible definition of the
sequence indices, and we obtain the equality:

xu[n] = xu[n mod (N)], ∀n ∈ Z. (1.4)

2. They are Constant Amplitude Zero Autocorrelation (CAZAC) sequences, so they have a constant
amplitude and a periodic zero auto-correlation. The auto-correlation R of the sequence y = xu
is defined as:

R[p] =
N−1∑
n=0

y[n]x∗u[n+ p]

R[p] =
N−1∑
n=0

xu[n]x∗u[n+ p] (1.5)

(1.6)
1Even though some research papers state that the ZC sequence length N has to be a prime number to have some

properties, this is mostly not true and the sequence still benefits most of its properties, even in the case of N even.
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The zero auto-correlation property is described by the following result:

R[p] =
{

0, if p 6≡ 0 mod (N),
N, if p ≡ 0 mod (N). (1.7)

Note that this is the left-shifted auto-correlation version. The right-shifted auto-correlation is
defined as:

R[p] =
N−1∑
n=0

xu[n]x∗u[n− p] (1.8)

Since −p 6≡ 0 mod (N) is equivalent to p 6≡ 0 mod (N) and since −p ≡ 0 mod (N) is equivalent
to p ≡ 0 mod (N), the right-shifted auto-correlation also verifies:

R[p] =
{

0, if p 6≡ 0 mod (N),
N, if p ≡ 0 mod (N). (1.9)

If the sequence is right-shifted by l, denoted as xu,l[n] = xu[n − l], the right-shifted auto-
correlation is computed as:

R[p] =
N−1∑
n=0

xu,l[n]x∗u[n− p] (1.10)

As expected, it has its maximum in p = l. The left-shifted auto-correlation will have its maximum
p = N− l. A symmetric behavior applies for the left-shifted sequence and the right/left-shifted
auto-correlation.

3. We can easily demonstrate the following property:

xu[a+ b] = xu[a]xu[b] exp
(
−j 2πuab

N

)
(1.11)

4. Closed-form solutions of the normalized Discrete Fourier Transform (DFT) and Inverse DFT
(IDFT) of a right p-shifted ZC sequence can be derived:

DFT(xu,p)[k] = F(xu,p)[k] = 1√
N

N−1∑
n=0

xu[n− p] exp
(
−j2πnkN

)
F(xu,p)[k] = x∗u[u−1k − p]xu[−p]F(xu)[0] (1.12)

IDFT(xu,p)[k] = F−1(xu,p)[k] = 1√
N

N−1∑
n=0

xu[n− p] exp
(
j2πnkN

)
F−1(xu,p)[k] = x∗u[−u−1k − p]xu[−p]F−1(xu)[0] (1.13)

With u−1 the modular multiplicative inverse of u with respect to N (see section 2.1). More
information on these closed-forms are provided in section 3.

1.3 Even Length Zadoff-Chu Sequences Properties

Most of the literature on ZC sequences focus on prime length ones. This is mainly due to the fact that,
when N is a prime number, there are N− 1 possible values for the sequence index u. Hence, prime N
maximizes the number of different sequences, which is useful in the case of multi-users communications
schemes, where each user would be allocated a different ZC sequence.

The current study focus on even value of N, as the sequences will be used for the modulation of
binary words. More precisely, N will be expressed as 2M, with M ∈ N∗ the length of the modulated
binary words. Details on the interaction between the ZC sequence, the Cyclic Code-Shift Keying
(CCSK) modulation and the Orthogonal Frequency-Division Multiplexing (OFDM) modulation can
be found in section 4.
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1.3.1 Symmetry

In [2], the authors demonstrate a central symmetry property for odd values of N:

xu[N− 1− n] = xu[n] (1.14)

A similar property can be derived for even values of N:

xu[N − n] = exp
(
−j πu(N− n)2

N

)
= xu[n] exp (−jπu(N− 2n))

= xu[n] exp
(
−j2πu

(N
2 − n

))
(1.15)

Since N is even, we obtain the equality:

xu[N − n] = xu[n] = xu[−n] (1.16)

1.3.2 Correlation with the reverse sequence

We are now interested in a right-shifted ZC sequence xu,p, with shift value p, and its reverse sequence
yu,p. The reverse sequence takes the index of the original sequence from the end to the beginning, so
from N− 1 to 0. We have:

xu,p[n] = xu[n− p] (1.17)

and,
yu,p[n] = xu,p[N− 1− n] = xu[N− (n+ p+ 1)] (1.18)

Using the symmetric property of ZC sequence, we demonstrate for N even:

yu,p[n] = xu[n+ p+ 1] (1.19)

Hence, the reverse sequence yu,p is equal to the root sequence xu left-shifted by p+ 1.
From this equality, we look at the cross-correlation between yu,p and xu:

R[s] =
N−1∑
n=0

yu,p[n]x∗u[n− s]

=
N−1∑
n=0

xu[n+ p+ 1]x∗u[n− s]

=
N+p∑

m=p+1
xu[m]x∗u[m− p− 1− s] setting m = n+ p+ 1,

=
N−1∑
m=0

xu[m]x∗u[m− (p+ 1 + s)] from N-periodicity, see 2.2 (1.20)

By definition of the ZC auto-correlation, we have the following equality:

R[s] =
{

0, if p+ s+ 1 6≡ 0 mod (N),
N, if p+ s+ 1 ≡ 0 mod (N). (1.21)

The case R[s] = N is solved for the right-shift s = N− 1− p, considering 0 ≤ p ≤ N− 1.

©QCSP, September 2023 Page 11 of (98)
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The cross-correlation between xu,p and yu,p can be also of interest:

R[s] =
N−1∑
n=0

xu,p[n]y∗u,p[n− s]

=
N−1∑
n=0

xu[n− p]x∗u[n− s+ p+ 1]

=
N−1−p∑
m=−p

xu[m]x∗u[m− s+ 2p+ 1] setting m = n− p,

=
N−1∑
m=0

xu[m]x∗u[m− (s− 2p− 1)] (1.22)

This leads to the equality:

R[s] =
{

0, if s− 2p− 1 6≡ 0 mod (N),
N, if s− 2p− 1 ≡ 0 mod (N). (1.23)

The condition leading to a correlation, s− 2p− 1 ≡ 0 mod (N), means that s− 2p− 1 is even. It
yields that the maximum of correlation can only be obtained for odd s values, with s ≡ 2p+ 1 mod N.

1.3.3 Cross-Correlation Between Different Sequences

In [3], the authors study the magnitude of the cross-correlation between different ZC sequences2, i.e.
with different indexes u.

Lets define two ZC sequences of same length N, with indexes u and v, such that, u 6= v, 0 < u, v <
N, gcd(N, u) = 1 and gcd(N, v) = 1. We also define the values gu,v = gcd(N, u − v), ru,v = N

gu,v
and

su,v = u−v
gu,v

. The left-shifted cross-correlation between xu and xv is defined as:

R[p] =
N−1∑
n=0

xu[n]x∗v[n+ p] (1.24)

Writing p as p = ipgu,v+dp, where ip =
⌊

p
gu,v

⌋
and dp = p− ipgu,v, [3] provides the following result:

|R[p]| =
{ √

Ngu,vδK(dp), if N and ru,vsu,v are even, or N is odd,√
Ngu,vδK(dp − gu,v

2 ), if N is even and ru,vsu,v is odd (1.25)

with δK(·) the Kronecker delta function, defined as:

δK(k) =
{

1, if k = 0,
0, otherwise. (1.26)

We consider our case of study, where N = 2M, M ∈ N∗. Since N is even, we need to check the
status of the product ru,vsu,v. u and v being odd, it means that u − v is even. Hence gu,v will have
the form gu,v = 2m, with 1 ≤ m ≤ M− 1.

ru,v = N
gu,v

= 2M

2m (1.27)

So ru,v is even.
su,v = u− v

gu,v
= 2mα

2m = α (1.28)

2Actually, the sequences studied are Chu sequences, whose definition is closed to the one we use in the current study.
The results provided by the paper apply here.
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By definition of the gcd, α has to be odd, with a minimum value of 1. Consequently, the product
ru,vsu,v is even, and we fall in the first case where:

|R[p]| =
√

Ngu,vδK(dp) (1.29)

dp = 0 when p is a multiple of gu,v. Since gu,v = 2m, all the odd values of p lead to |R[p]| = 0. The
even values of p, multiple of gu,v, will result in |R[p]| =

√
N2m, and the others to |R[p]| = 0.

To get the right-shifted cross-correlation, we use the relation Rright[p] = Rleft[N−p]. Consequently,
if p is odd, then N− p is also odd. If p is even and can be written as a multiple of 2m, so can N− p.
Thus, the magnitude of the right-shifted cross-correlation is equal to the magnitude of the left-shifted
one.
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2 Mathematical Toolbox

This section presents several mathematical tools useful for the following work.

2.1 Greatest Common Divisor and Modular Inverse

Considering a, b ∈ Z, not both null, the Greatest Common Divisor (GCD) r ∈ Z of a and b is noted
as gcd(a, b) = r. We say that a and b are relatively prime if gcd(a, b) = 1.

Theorem 1 (Bézout) Considering a, b ∈ Z, not both null, and r their GCD, gcd(a, b) = r, then
∃(u, v) ∈ Z, such that:

au+ bv = r

Moreover, a and b are relatively prime, if and only if, ∃(u, v) ∈ Z, such that:

au+ bv = 1

Definition 2 (Modular Multiplicative Inverse) The modular multiplicative inverse of u with re-
spect to N, noted u−1, is defined by:

uu−1 ≡ 1 mod (N)

Thus, ∃v ∈ Z such as,
uu−1 = vN + 1

Consequently, the modular inverse u−1 exists if and only if, u and N are relatively prime. For the
same reason, u−1 and N are also relatively prime. Following the previous statements, an interesting
equality can be directly derived. Considering (u,N) ∈ (N∗)2 and u and N relatively prime, then:

exp
(
j

2π
N

)
= exp

(
j

2π
N
uu−1

)
(2.1)

There are an infinite number of u−1 values, because of the modulo N operation. Usually, the value
of u−1 is considered modulo N and unique, so that 1 ≤ u−1 < N (u−1 cannot be equal to 0).

2.2 Periodic Sequences

Definition 3 A sequence x[n] is N-periodic if:

x[n] = x[n+N ], ∀n ∈ Z

By recurrence, it can be shown that any sum of N consecutive elements of an N-periodic sequence
x[n] are equal:

N−1+p∑
n=p

x[n] =
N−1∑
n=0

x[n] (2.2)

2.3 Linear Congruential Generator

Linear congruential generators consider periodic sequences of integers defined by the relationship:

Xn+1 = (aXn + c) mod (m), (2.3)

with m ∈ N∗, a ∈ N∗ and 0 < a < m, c ∈ N and 0 ≤ c < m and 0 < X0 < m. X0 is known as the
seed of the sequence. With appropriate choice of a, c and m, one can obtain a sequence with known
length.
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Theorem 2 (Hull-Dobell [4]) The sequence Xn has a full length m (is m-periodic), if and only if:

1. m and c are relatively prime,

2. a− 1 is divisible by all prime factors of m,

3. a− 1 is divisible by 4 if m is divisible by 4.

2.4 Normal Distribution

2.4.1 Definition

A random variable X follows a normal distribution of expectation µ and standard deviation σ if its
probability density function f(x) for x ∈ R is expressed as:

f(x) = 1
σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(2.4)

In this case, we adopt the following notation: X∼ N (µ, σ2), with σ2 the variance of the distribution.

Normal distributions have the following properties:

1. If x ∼ N (µ, σ2), then considering (a, b) ∈ R2, ax+ b ∼ N (aµ+ b, a2σ2).

2. If x ∼ N (µ1, σ
2
1) and y ∼ N (µ2, σ

2
2), and if x and y are independent, then x + y ∼ N (µ1 +

µ2, σ
2
1 + σ2

2).

2.4.2 White Gaussian Noise Process

Considering a stationary complex white Gaussian noise process X(t), the sequence of time samples
x[t] of X(t) are independent random variables, each following a complex normal distribution, so that
x[t] ∼ CN (0, σ2) ∀t. Hence, x[t] is expressed as x[t] = y[t] + jz[t], with y[t] ∼ N (0, σ2

2 ) ∀t, z[t] ∼
N (0, σ2

2 ) ∀t, and the random variables from the sequence y and from the sequence z are all mutually
independent. Consequently, the distribution of x[t] is a circularly-symmetric central complex normal
distribution, which means that for any φ ∈ R, the random variable ejφx ∼ CN (0, σ2).

From [5], both DFT and IDFT of the sequence x, normalized by 1√
N with N the size of the

DFT/IDFT, are a sequence of independent random variables, complex normally distributed, so that
DFT(x)[k] ∼ CN (0, σ2) and IDFT(x)[k] ∼ CN (0, σ2) ∀k. Moreover, all real and imaginary parts of
the sequence (I)DFT(x) are mutually independent, defining new white random variables.

2.4.3 Cumulative Distribution Function

The error function, noted erf, is defined on C as:

erf(x) = 2√
π

∫ x

0
exp (−t2)dt. (2.5)

The complementary error function, noted erfc, is defined as:

erfc(x) = 1− erf(x)

= 2√
π

∫ +∞

x
exp (−t2)dt. (2.6)
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The Cumulative Distribution Function (CDF) of the standard normal distribution N (0, 1) is equal
to:

Φ(x) = 1√
2π

∫ x

−∞
exp

(
− t

2

2

)
dt

= 1
2

[
1 + erf

(
x√
2

)]
. (2.7)

Equivalently, we have:
1− Φ(x) = 1

2erfc
(
x√
2

)
. (2.8)

2.5 Rayleigh Distribution

A random variable X follows a Rayleigh distribution of scale σ if its probability density function f(x)
for x ∈ R+ is expressed as:

f(x) = x

σ2 exp
(
− x2

2σ2

)
(2.9)

We note the distribution R(σ). The Rayleigh distribution of parameter σ has the following prop-
erties:

1. Considering two independent Gaussian random variables U ∼ N (0, σ2) and V ∼ N (0, σ2), the
random variable X =

√
U2 + V2 follows a Rayleigh distribution of scale σ: X ∼ R(σ).

2. The CDF is equal to:

Φ(x) = 1− exp
(
− x2

2σ2

)
(2.10)

3. The expectation is equal to:
E[X] = σ

√
π

2 (2.11)

4. The variance is equal to:
Var(X) =

(
1− π

2

)
σ2 (2.12)

2.6 Jacobi symbols

The Jacobi symbol
(
a
n

)
is defined, for a ∈ Z and n ∈ N∗, n odd, as the product of the following

Legendre symbols: (
a

n

)
=
(
a

p1

)e1 ( a
p2

)e2

. . .

(
a

pk

)ek
(2.13)

where the prime factorization of n = pe1
1 p

e2
2 . . . pekk .

A Legendre symbol
(
a
p

)
takes its values in the set {0, 1,−1} and is defined as:

(
a

p

)
=


0, if a ≡ 0 mod (p),
1, if a ≡ x2 mod (p), with x ∈ N∗,
−1, if a ≡ y mod (p), y not a square.

(2.14)
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3 DFT and IDFT of ZC Sequences

This section presents the special interaction between the DFT and IDFT operations and the ZC
sequences. Since these operations will be at the center of the CCSK-OFDM communication scheme,
we develop here some interesting results.

3.1 Closed-Form Solutions

The closed-form expression of the DFT presented in Eq.1.12 is derived in [6]. Based on the demon-
stration provided for the DFT we can directly find the IDFT closed-form of Eq.1.13.

DFT Proof: In [6], the author provides the following demonstration. We consider the normalized
DFT of the following ZC sequence:

F(xu,p)[k] = 1√
N

N−1∑
n=0

xu[n− p] exp
(
−j2πnkN

)
. (3.1)

The sequence is right-shifted by p symbols, with 0 ≤ p < N. Again, the index of the ZC sequence
should be read modulo N, as we consider the extended N-periodic sequence. We use a new index
l = n− p and the variable d = u−1k, with u−1 the modular multiplicative inverse of u with respect to
N (see section 2.1). u−1 exists since u and N are relatively prime. We obtain:

F(xu,p)[k] = 1√
N

N−1−p∑
l=−p

xu[l] exp
(
−j2π l + p

N ud

)

F(xu,p)[k] = 1√
N

N−1∑
l=0

xu[l] exp
(
−j2π l + p

N ud

)
, (3.2)

since the sequence under the sum is N-periodic. By noticing that xu[l+d] = xu[l]xu[d] exp
(
−j2π uldN

)
,

we obtain:

F(xu,p)[k] = 1√
N
x∗u[d] exp

(
−j2πupdN

)N−1∑
l=0

xu[l + d]

= x∗u[d] exp
(
−j2πupdN

)
F(xu)[0]. (3.3)

Using the relationship,

x∗u[d] exp
(
−j2πupdN

)
= x∗u[d− p]xu[−p]

we directly get:
F(xu,p)[k] = x∗u[u−1k − p]xu[−p]F(xu)[0]. (3.4)

To obtain the IDFT closed-form, we follow the same steps, setting d = −u−1k:

F−1(xu,p)[k] = x∗u[−u−1k − p]xu[−p]F(xu)[0], (3.5)

since,

F(xu)[0] = F−1(xu)[0] = 1√
N

N−1∑
n=0

xu[n].

©QCSP, September 2023 Page 17 of (98)



D2.5b: Study of CCSK-OFDM

Moreover, the DFT and the IDFT are linked by the relationship:

F(xu,p)[N− k] = F−1(xu,p)[k] (3.6)

In case of 2M length ZC, using symmetry property, we have:

F(xu,p)[k] = x∗u[u−1k − p]xu[p]F(xu)[0].
F−1(xu,p)[k] = x∗u[u−1k + p]xu[p]F(xu)[0] (3.7)

3.2 Value of F(xu)[0] for 2M length Zadoff-Chu sequences

We consider a ZC sequence of length N = 2M with M ∈ N∗. From [6] and [7], the value of the first
term of the normalized DFT or IDFT of a 2M length ZC is:

F(xu)[0] =
(2N
u

)
exp

(
j
π

4 (−1)
u+1

2

)
, (3.8)

with
(

2N
u

)
a Jacobi symbol (see section 2.6), taking its value in the set {0,−1, 1}. In our case,(

2N
u

)
= ±1. Hence, one can express F(xu)[0] as:

F(xu)[0] = ± exp
(
±j π4

)
(3.9)

3.3 Shuffle of the ZC sequence

By normalizing by x∗u[−p]
F(xu)[0] , the DFT of xu is a sampled version of x∗u:

F(xu,p)[k] = x∗u[u−1k − p]. (3.10)

We note y[k] the sequence of sampling index (u−1k − p) mod (N), for 0 ≤ k ≤ N − 1, with
y[0] = −p mod (N). The distributivity of modulo operation states:

(a+ b) mod (N) = [(a mod (N)) + (b mod (N))] mod (N) (3.11)

This leads to the sequence relationship:

y[k + 1] = (y[k] + u−1) mod (N) (3.12)

Since u−1 is relatively prime with N, we can apply the Hull-Dobell Theorem [4] (see section 2.3).
It means that the sequence y[k] is N-periodic. By definition, it also means that there is no value
repeated within N consecutive values of y[k] (since y[k + 1] is entirely defined by y[k]). Hence the N
index values defined from y[0] to y[N−1] are a sampling of N unique values from 0 to N−1. Thus the
N-periodic sequence x∗u[u−1k − p] is actually a shuffling and N-periodic sampling of the ZC sequence
x∗u.

In the case of the IDFT, the index sequence relationship is:

y[k + 1] = (y[k] + (−u−1) mod (N)) mod (N) (3.13)

Since we have 1 ≤ u−1 < N, then (−u−1) mod (N) = N − u−1. We can easily demonstrate that
N−u−1 is also prime with N and we can apply the Hull-Dobell Theorem. Thus the N-periodic sequence
x∗u[−u−1k − p] is also a shuffling and N-periodic sampling of the ZC sequence x∗u.
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3.4 Correlation Property

The rigth-shifted correlation function of F(xu,p) with F(xu) is defined as:

R[s] =
N−1∑
k=0

F(xu,p)[k]F∗(xu)[k − s] (3.14)

Developing this expression:

R[s] =
N−1∑
k=0

x∗u[u−1k − p]xu[−p]F(xu)[0]xu[u−1(k − s)]x∗u[0]F∗(xu)[0]

= xu[−p]
N−1∑
k=0

exp
(
j
πu(u−1k − p)2

N

)
exp

(
−j πu(u−1(k − s))2

N

)

= xu[−p]
N−1∑
k=0

exp
(
j
πu(u−1u−1k2 − 2u−1kp+ p2 − u−1u−1k2 + u−1u−12ks− u−1u−1s2)

N

)

= xu[u−1s]
N−1∑
k=0

exp
(
j

2πkuu−1(u−1s− p)
N

)

= xu[u−1s]
N−1∑
k=0

exp
(
j

2πk(u−1s− p)
N

)
(3.15)

Recognizing a sum of root of unity, we can conclude:

R[s] =
{

0, if u−1s 6≡ p mod (N),
Nxu[p], if u−1s ≡ p mod (N). (3.16)

The correlation function admits a maximum value of Nxu[p] obtained at the index s checking
u−1s ≡ p mod (N). As explained in section 3.3, the series y[s] = u−1s mod N will browse exactly
once all the integers within 0 and N − 1 for s ∈ [0; N − 1]. We can conclude ∃!s ∈ [0; N − 1] so that
u−1s ≡ p mod N. Thus, the correlation function R is a perfect zero correlation function.

By extension, the IDFT of xu,p has also a zero auto-correlation function, with a maximum value
of Nxu[p] obtained at the unique index s checking u−1s ≡ N− p mod (N):

R[s] =
{

0, if u−1s 6≡ N− p mod (N),
Nxu[p], if u−1s ≡ N− p mod (N). (3.17)
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4 CCSK-OFDM: AWGN Channel

This section introduces the combination of the two modulations OFDM and CCSK. Several
communication schemes are presented and the performance are assessed in an Additive White Gaussian
Noise (AWGN) channel.

4.1 Reminders on OFDM

The OFDM [8] is a form of Multi-Carrier Modulation (MCM) that maps N information symbols on
N sub-carriers in frequency. Hence, instead of transmitting the data on a single carrier of bandwidth
B, the same bandwidth is split in N sub-carriers each of bandwidth B

N .
The Figure 4.1 describes a typical OFDM transmitter. Among the MCM, the particularity of

OFDM is to use the IDFT and DFT operations, at the transmitter and receiver respectively, to map
data symbols of the different sub-carriers to a physical signal and vice versa. Usually, these operations
are realized by their faster algorithmic version, the Inverse Fast Fourier Transform (IFFT) and the
Fast Fourier Transform (FFT).

Figure 4.1: OFDM transmitter scheme.

The sequence of symbols to transmit are noted as x[n] for n ∈ [0; N− 1]. The symbols can belong
to any modulation constellation, as Binary Phase-Shift Keying (BPSK) for instance. The sequence
x[n] is then mapped from series to parallel by the “S/P” block. The mapping of each symbol in the
parallel form will correspond to the associated sub-carrier in frequency.

This association is realized by the IDFT operation. One can see the IDFT as the transformation
from frequency to temporal domain. The resulting normalized IDFT symbols are described as:

X[k] = 1√
N

N−1∑
n=0

x[n] exp
(
j2πknN

)
for 0 ≤ k ≤ N− 1 (4.1)

The IDFT symbols vector is then mapped from parallel to series by the “P/S” block. The sequence
of symbols X[k] is then transmitted as a continuous time signal by the Radio Frequency (RF) block.
The vector of IDFT symbols constitutes one OFDM symbol. The OFDM symbol carries N data
symbols, each transmitted at a rate B

N .
The OFDM receiver is described by the Figure 4.2. In baseband, the synchronized received signal

Y (t) is sampled at a rate 1
B . Without any imperfection, the sequence of N received samples is defined

as:

Page 20 of (98) ©QCSP, September 2023



D2.5b: Study of CCSK-OFDM

Y [k] = X[k] = IDFT(x)[k] = F−1(x)[k] (4.2)

Figure 4.2: OFDM receiver scheme.

In the same manner, we note DFT(x)[k] = F(x)[k]. The receiver recovers the transmitted sequence
x[n] by applying the normalized DFT operation to the received vector of samples:

x̃[n] = F(F−1(x))[n]

= 1√
N

N−1∑
k=0

X[k] exp
(
−j2πnkN

)
= x[n], for 0 ≤ n ≤ N− 1 (4.3)

4.2 Reminders on CCSK

The CCSK modulation is a form of direct sequence spread-spectrum technique, where a symbol s of
the set of integers SN = {0, 1, ...,N− 1} is associated to the circular shift of a sequence of N chips in
CN [9][10]. In a more traditional context, the size N is a power of 2, so that N = 2M and a symbol s
can be represented as a binary word of M bits.

Considering the ”root” sequence p0 of N chips, the symbol s is mapped to the sequence ps, defined
as the sequence p0 circularly right-shifted by s positions, so that:

ps[i] = p0[i− s mod (N)], 0 ≤ i < N (4.4)

Consequently, a sequence of modulated symbols is a succession of circularly shifted version of p0.
Each sequence ps is called a CCSK symbol.

To demodulate a received CCSK symbol y, one can compute the right-shifted cross-correlation
between y and the root sequence p0. If the sequence p0 is well-chosen, the maximum of the cross-
correlation will indicate the modulated symbol s. Hence, the auto-correlation function of the root
sequence p0 should have a spike at index 0 and low values when the sequences are not synchronized.
As presented in [10], the right-shifted cross-correlation can be efficiently computed by employing DFT
and IDFT operations:

R[k] = F−1(F(y)� F∗(p0))[k] = 1√
N

N−1∑
i=0

y[i]p∗0[i− k mod (N)] (4.5)

with � the Hadamard product operator (term by term multiplication). The factor 1√
N appears

because the DFT and IDFT operations are normalized. Consequently, the cross-correlation scores are
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divided by 1√
N , with a maximum value of

√
N. The estimated symbol s̃ can be expressed as:

s̃ = argmax
k∈SN

(R[k]) (4.6)

Since R can take complex values, the real or absolute value of the cross-correlation is usually taken
instead.

In the context of the QCSP project, the CCSK modulation is usually associated with a non-
binary code, to constitute the Non-Binary CCSK (NB-CCSK) communication scheme. As explained
in Deliverable 1.1, but also in [11][12], if the CCSK sequence is based on a pseudo-noise sequence
with elements in {−1; +1}, the Log-Likelihood Ratio (LLR) can be efficiently computed by the cross-
correlation.

We consider the transmitted CCSK symbol x corresponding to the data symbol u, affected by an
AWGN. The received sequence of samples y is expressed as:

y[n] = x[n] + z[n], for n ∈ [0,N− 1] (4.7)

where z is the sequence of mutually independent random sample of noise, with z[n] ∼ N (0, σ2) for
0 ≤ n < N . It should be noted that x, z and y are all real valued. The non-binary LLR is a vector γ,
where the kth component is defined as:

γ[k] = log
(Pr(u = 0 | y)

Pr(u = k | y)

)
, (4.8)

with Pr(u = k|y) is the probability that the transmitted symbol is equal to k (k 6= 0), with the
previous knowledge of y. Deliverable 1.1 shows that:

γ[k] = 1
σ2 (y · p0 − y · pk), (4.9)

with y · pk = R[k] = ∑N−1
i=0 y[i]p∗0[i − k mod (N)]. The constant factor 1

σ2 can be removed since
it will not influence the performance. Consequently, γ can be efficiently computed by a difference
between R[0] and the R[k]. For this relation to hold, the only requirement on the real sequence p0 is
that ∑N−1

i=0 p0[i]2 = ∑N−1
i=0 pk[i]2.

We consider now the case of a complex sequence x affected by a complex white Gaussian noise z,
where each sample z[k] ∼ CN (0, σ2) (see section 2.4). The ktk LLR is defined as:

γ[k] = log
(Pr(u = 0 | y)

Pr(u = k | y)

)
= log

(Pr(x = p0 | y)
Pr(x = pk | y)

)

=
N−1∑
i=0

log
(Pr(x[i] = p0[i] | y[i])

Pr(x[i] = pk[i] | y[i])

)
(4.10)

with the last equation obtained considering an independent distribution of errors. If we consider
that the transmitted sequences are equiprobable, and applying the Bayes formula, we get:

γ[k] =
N−1∑
i=0

log
(Pr(y[i] | x[i] = p0[i])

Pr(y[i] | x[i] = pk[i])

)

=
N−1∑
i=0

log
(Pr(<(y[i]) | <(x[i]) = <(p0[i]))

Pr(<(y[i]) | <(x[i]) = <(pk[i]))
Pr(=(y[i]) | =(x[i]) = =(p0[i]))
Pr(=(y[i]) | =(x[i]) = =(pk[i]))

)
(4.11)
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with <(.) and =(.) the real and imaginary part respectively. We have supposed that the real and
imaginary parts of the noise are independent with <(z[k]) ∼ N (0, σ2

2 ) and =(z[k]) ∼ N (0, σ2

2 ). Each
probability has the form:

Pr(<(y[i]) | <(x[i]) = <(p0[i])) = 2
σ
√

2π
exp

(
−2(<(y[i])−<(p0[i]))2

σ2

)
(4.12)

Hence we have,

γ[k] = 2
σ2

N−1∑
i=0

[
− (<(y[i])−<(p0[i]))2 − (=(y[i])−=(p0[i]))2

+ (<(y[i])−<(pk[i]))2 + (=(y[i])−=(pk[i]))2]
= 2
σ2

N−1∑
i=0

[
2
(
<(y[i])<(p0[i]) + =(y[i])=(p0[i])

−
(
<(y[i])<(pk[i]) + =(y[i])=(pk[i])

))
−<(p0[i])2 + <(pk[i])2 −=(p0[i])2 + =(pk[i])2] (4.13)

Noticing that,

y[i]x∗[i] =
(
<(y[i])<(x[i]) + =(y[i])=(x[i])

)
+

j
(
<(x[i])=(y[i])−<(y[i])=(x[i])

)
(4.14)

We can simplify Eq.4.13 into,

γ[k] = 4
σ2 (<(y · p0)−<(y · pk)) + 2

σ2

N−1∑
i=0
|pk[i]|2 − |p0[i]|2 (4.15)

Since we have ∑N−1
i=0 |pk[i]|2 −

∑N−1
i=0 |p0[i]|2 = 0, then:

γ[k] = 4
σ2 (<(y · p0)−<(y · pk)) (4.16)

Hence, in the case of complex sequence, the LLR can be also efficiently computed based on the
difference of <(R[0]) and the <(R[k]).

4.3 Single CCSK Symbol per OFDM Symbol

This section will introduce three communication schemes mixing CCSK and OFDM modulations. The
schemes are named scheme A, B and C for simplicity.

4.3.1 Transmitter and Receiver A

The first communication scheme A is inspired from the one provided by the state of the art on the
combination of CCSK and OFDM in [13] and [12].

We consider a transmission scheme, mixing the CCSK and OFDM modulation, described by Figure
4.3 and named Transmitter A. The data symbols s belong to the set of integers SN = {0, 1, ...,N− 1},
with N = 2M and M ∈ N∗. Each symbol can be represented as a unique M-long binary word. The data
symbols are first modulated by the CCSK, based on a ZC sequence xu[n] of length N. One can note
that [13] uses a Chu sequence for the CCSK modulation and [12] a pseudo-noise sequence of {−1; +1}
values. Since N is even, the ZC sequence has the following definition:

xu[n] = exp
(
−jπun

2

N

)
(4.17)
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Figure 4.3: CCSK-OFDM Transmitter A, single CCSK symbol modulated.

with 0 < u < N and gcd(u,N) = 1. Because N = 2M, we can deduce that u can be any odd number
between 1 and N−1. There are N

2 possible values for u.
We consider a standard CCSK mapping, where the symbol sp of numerical value p is modulated

as a right shift of the ZC sequence of p chips, 0 ≤ p < N− 1. The resulting modulated sequence of N
chips cp is:

cp[n] = xu[n− p], for 0 ≤ n < N (4.18)

We then map a single CCSK symbol on the corresponding OFDM sub-carriers. The chip index n
is mapped to the sub-carrier n, leading to the normalized IDFT signal:

F−1(cp)[k] = Cp[k] = 1√
N

N−1∑
n=0

xu[n− p] exp
(
j2πknN

)
for 0 ≤ k ≤ N− 1 (4.19)

The N complex symbols Cp constitutes the transmitted OFDM symbol. We first consider the
communication scheme described by the Figure 4.4, where the transmitted signal is only affected by
an AWGN.

Figure 4.4: CCSK-OFDM communication scheme over AWGN channel.

Hence the received sequence of samples y is defined as:

Y [k] = Cp[k] +W [k] (4.20)

where the random process W is a stationary white Gaussian noise, and each sample W [k] ∼
CN (0, σ2) and are independent for 0 ≤ k < N − 1. The receiver, named Receiver A, is described
in Figure 4.5. We assume that the signal is received in perfect time and frequency synchronization
conditions. The received signal is first processed by a DFT as in a standard OFDM receiver. The
resulting samples c̃p can then be processed by a standard CCSK demodulator, using the equation
R[k] = F−1(F(c̃p)�F∗(c0))[k]. In the correlator block, the DFT of c̃p is term by term multiplied with
the conjugate of the DFT of the root ZC sequence c0 = xu. The IDFT of the result provides the
cross-correlation of c0 and c̃p. Taking the real part of the cross-correlation, the index of the maximum
should then provides the most likely binary symbol s̃p.

In this communication scheme (Transmitter and Receiver A), the modulation and demodulation
steps of CCSK and OFDM are performed independently and successively. Thus, the system keeps the
flexibility advantage of the OFDM, and the transmitted N-length sequence could be placed anywhere
within a wider spectrum, padding zeros on the unused sub-carriers of the IDFT. At the receiver, the
second DFT operation starts the CCSK demodulation and should be a N-points DFT to enable the
efficient cross-correlation computation.

For the moment, we assume that the transmitted sequence occupies the whole system spectrum.
Hence the system uses N-points IDFT and DFT, and there is no zero-padding in the IDFT at the
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Figure 4.5: CCSK-OFDM Receiver A.

transmitter. We are interested in the noise distribution after the correlation process. After the
OFDM-DFT, the output samples c̃p have the form:

c̃p[k] = cp[k] + w[k], (4.21)

where cp[k] = xu[k − p] and, from section 2.4, w[k] ∼ CN (0, σ2). Then, the receiver processes the
DFT of samples c̃p, do an Hadamard product with the complex conjugate of the DFT of c0 and finally
computes the IDFT, leading to:

R[k] = F−1(F(cp)� F∗(c0))[k] + F−1(F(w)� F∗(c0))[k] (4.22)

The first term of the sum is the cross-correlation part, noted A[k]. The second term, noted B[k],
is the noise term. From section 2.4, we know that F(w)[k] = w′[k] ∼ CN (0, σ2). As developed in [6]
and in section 3, one can express the F∗(c0)[k] as ±ejφ[k] with φ[k] a phase term depending on u, u−1,
N and p. From its circularly-symmetric property, w′′[k] = ±w′[k]ejφ[k] ∼ CN (0, σ2). Consequently,
we have B[k] = F−1(w′′)[k] ∼ CN (0, σ2). Hence, the noise affecting the cross-correlation term has the
same distribution as the original one. Also, it is clear that the resulting B[k] values are independent
identically distributed complex Gaussian random variables.

The value of the cross-correlation term A[k] will depend on the size N of the ZC sequence and
the actual shift value p. Moreover, because of the normalization used for the DFT and IDFT, the
values will be multiplied by 1√

N . Since the term A[k] is real-valued (0 or
√

N), it is more efficient
to take the real part of R[k] instead of the absolute complex value, to decrease the noise term:
<(R[k]) = A[k] + <(B[k]), with <(B[k]) ∼ N (0, σ2

2 ).

4.3.2 Transmitter and Receiver B

In the scheme B, we move forward the correlation operation to realize the OFDM-DFT and CCSK-
DFT in a single process. The Transmitter B is the same as the Transmitter A described in Figure
4.3. The Receiver B is described in Figure 4.6. The received signal Y is directly correlated with the
conjugate of the IDFT of the root ZC sequence c0. Then, the DFT is processed, resulting in the
sequence of samples R defined as:

R[k] = F(F−1(cp)� F−1(c0)∗)[k] + F(W � F−1(c0)∗)[k], (4.23)

with W ∼ CN (0, σ2). The equation is similar to Eq.4.22, leading to similar performance results
as scheme A for an AWGN channel.

Contrary to the communication scheme A, the scheme B cannot allow the mapping of several
CCSK symbols next to one another in frequency. The received signal Y should only contain one
single CCSK symbol, occupying the whole system bandwidth. Yet, if the RF block is able to filter
and extract groups of frequencies, each containing one transmitted CCSK symbol, then it should be
possible to processed each CCSK symbol individually.
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Figure 4.6: CCSK-OFDM Receiver B.

Hence, the scheme B does not really use the flexibility of OFDM and one can say that this
scheme moved the first CCSK-IDFT of a standard CCSK receiver (without OFDM) to the transmitter.
Consequently, and in these perfect reception conditions, the receiver is less complex then the Receiver
A and than a standard CCSK receiver.

4.3.3 Transmitter and Receiver C

The communication scheme C keeps bringing the correlation operation forward in the processing
chain, and actually placed it in the transmitter, as depicted in Figure 4.7. After the OFDM-IDFT,
the samples are term by term multiplied by the IDFT of the root ZC sequence c0. The resulting signal
is transmitted. The receiver described in Figure 4.8 has then simply to process the common OFDM-
and CCSK-DFT to achieve the cross-correlation operation. The values of R are expressed as:

R[k] = F(F−1(cp)� F−1(c0)∗)[k] + F(W )[k], (4.24)

with W ∼ CN (0, σ2). The scheme C also has the same performances as the scheme A in an AWGN
channel.

Figure 4.7: CCSK-OFDM Transmitter C.

Figure 4.8: CCSK-OFDM Receiver C.

The scheme C does not allow the mapping of several CCSK symbols next to one another in
frequency. The transmitted CCSK symbol should occupy the whole system bandwidth. Consequently
and as for the scheme B, the system does not really use the OFDM advantages and simply push
the complexity of the CCSK modulation towards the transmitter. In these perfect synchronization
conditions and AWGN channel, the receiver is here extensively simple.

Page 26 of (98) ©QCSP, September 2023



D2.5b: Study of CCSK-OFDM

After the DFT operation at the receiver, only one sub-carrier should have a spike of energy and
the position of this spike indicates the modulated binary symbol. This means that the modulation
is equivalent to a M-Frequency-Shift Keying (FSK) combined with OFDM. At the transmitter, one
could simply map the spike of energy directly on the right sub-carrier, providing the same results
without the complexity of the Hadamard product.

4.3.4 Performance Study

The analytical performance of the previous schemes can be derived from [9]. Considering R[k], two
outputs are possible. The first output is the index corresponding to the correct shift p:

Rp = R[p] =
√

N + z[p], (4.25)

where z[p] ∼ N (0, σ2

2 ). The second output corresponds to the N−1 incorrect indexes:

Rk = R[k 6= p] = z[k]. (4.26)

A CCSK symbol error occurs when there is at least one index k 6= p so that R[k] > Rp. The
probability of correct demodulation Pc is then equal to:

Pc =
∫ +∞

−∞
Pr(Rp > Rk,∀k 6= p | Rp)p(Rp)dRp (4.27)

and the probability of symbol error Pe = 1− Pc. The distribution of Rp and Rk are derived from
the noise distribution, such as,

p(Rp) = 1
σ
√
π

exp
(
−(Rp −

√
N)2

σ2

)
(4.28)

p(Rk) = 1
σ
√
π

exp
(
−Rk

2

σ2

)
(4.29)

Since all Rk are statistically independent, the joint probability in Eq.4.27 can be expressed as the
product of N− 1 marginal probabilities. One marginal can be expressed as:

Pm = 1
σ
√
π

∫ Rp

−∞
exp

(
−R2

k

σ2

)
dRk

= 1√
2π

∫ Rp
√

2
σ

−∞
exp

(
−u

2

2

)
du

= 1− 1
2erfc

(Rp

σ

)
(4.30)

For the last equality, see section 2.4. Consequently the probability of symbol error Pe is expressed
as:

Pe = 1− 1
σ
√
π

∫ +∞

−∞

(
1− 1

2erfc
(Rp

σ

))N−1
exp

(
−(Rp −

√
N)2

σ2

)
dRp

= 1
σ
√
π

∫ +∞

−∞

[
1−

(
1− 1

2erfc
(Rp

σ

))N−1
]

exp
(
−(Rp −

√
N)2

σ2

)
dRp

= 1√
2π

∫ +∞

−∞

[
1−

(
1− 1

2erfc
(
u√
2

))N−1
]

exp

−
 u√

2
−

√
N
σ2

2
du

= 1√
2π

∫ +∞

−∞

[
1−

(
1− 1

2erfc
(
u√
2

))N−1
]

exp

−( u√
2
−
√

Es
N0

)2du (4.31)
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with Es = N the mean energy per transmitted symbol, and N0 = σ2 the power of the complex
noise.

We simulate the performance of the communication system A (equivalent to system B and C as
explained in previous sections). Based on the previous analytical expression, we plot the Symbol
Error Rate (SER) versus Eb

N0
curves, with Eb is the mean energy per bit and Eb = Es

M . The Figure 4.9
presents the results of a CCSK modulation using a ZC sequence of size 64. The analytical curve has
been numerically evaluated.

The simulation matches the analytical results when the real part of the cross-correlation score
is taken. When the absolute value is taken instead, there is a performance loss due to the ampli-
tude of noise being greater than its real part. Hence, in case of an AWGN channel and in perfect
synchronization conditions, it is advantageous to take the real part of the cross-correlation.

Figure 4.9: SER vs Eb/N0 in an AWGN channel.

4.3.5 PAPR

The Peak to Average Power Ratio (PAPR) of the transmitted signal is usually a major constraint in
OFDM system. The PAPR of a discrete time signal s in decibel is defined as:

PAPRdB(s) = 10 log10

(
|speak|2

sRMS2

)
(4.32)

with |speak|2 the highest energy within the signal samples and sRMS the root mean square of the
signal samples. The PAPR of a standard OFDM signal is usually high, depending on the symbols
modulated and the size of the IDFT, leading to complex and costly power amplifier implementations,
with lower energy efficiency. We propose to analyse the PAPR of the proposed CCSK-OFDM schemes.

First, we consider the transmitted signal of the scheme A or B, defined as:

Cp[k] = 1√
N

N−1∑
n=0

xu[n− p] exp
(
j2πknN

)
, (4.33)
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As described in section 3, the transmitted signal Cp can be expressed as:

Cp[k] = x∗u[−u−1k − p]xu[−p]Cp[0], (4.34)

with Cp[0] defined in section 3.2 as,

Cp[0] =
(2N
u

)
exp

(
j
π

4 (−1)
u+1

2

)
,

= ± exp
(
±j π4

)
. (4.35)

Consequently, the amplitude of Cp[k] is constant and equal to 1. Hence, in our system, the DFT
and IDFT of a ZC sequence has a constant unitary amplitude. This also applies to the transmitted
signal of the scheme C, defined as:

x[k] = (F−1(cp)� F−1(c0)∗)[k] (4.36)

A direct consequence of the constant amplitude, is that the PAPRdB = 0dB for the communication
scheme A, B and C, allowing an efficient power amplifier implementation.

4.4 Multiple CCSK Symbols per OFDM Symbol

In the previous section, three transmitters and receivers combining the CCSK and OFDM modulations
were presented, while only a single CCSK symbol was mapped on the OFDM sub-carriers. It could
be interesting to map several CCSK symbols within a single OFDM symbol, increasing the data rate
of the system.

A block mapping can be used, positioning each CCSK symbol on different sub-carriers blocks.
These blocks could be positioned next to one another in frequency or dispatched over the whole
available bandwidth. While this block mapping is compatible with the transceiver A, it is not with
the transceivers B and C. Indeed each sub-carriers block (each CCSK symbol) needs an individual
correlation/demodulation chain, which is not (easily) possible with the scheme B and C, that mix
OFDM and CCSK demodulations.

4.4.1 Iterative Mapping

To enable the multiple CCSK symbols transmission for schemes B and C, a new mapping is proposed.
In this new mapping, named ”Iterative Mapping”, the CCSK symbols are iteratively mapped on
successive sub-carriers, as described on Figure 4.10. The mapping scheme first maps the first chip of
each CCSK symbol, then the second chip, and so on.

We consider q N-length CCSK symbols cpi , with i ∈ [0; q − 1] and pi ∈ [0;N − 1] the CCSK right
shift value modulating the information. The system uses a total of K = qN sub-carriers. One should
note that all the CCSK symbols use the same root sequence c0. The corresponding transmitted IDFT
samples are defined as:

C[k] = 1√
K

K−1∑
n=0

c[n] exp
(
j2πnkK

)
(4.37)

with c the resulting sequence of CCSK chips mapped on the sub-carriers, so that c[n] = cpi [l] for
n = lq + i and l ∈ [0,N− 1].
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Figure 4.10: Iterative mapping example with 3 CCSK symbols.

C[k] = 1√
K

K−1∑
n=0

c[n] exp
(
j2πnkK

)

= 1√
K

q−1∑
i=0

N−1∑
l=0

c[lq + i] exp
(
j2π (lq + i)k

qN

)

= 1√
K

q−1∑
i=0

N−1∑
l=0

cpi [l] exp
(
j2π lkN

)
exp

(
j2π ikK

)

=
√

N√
K

q−1∑
i=0

exp
(
j2π ikK

)
F−1(cpi)[k] (4.38)

Using the closed-form of the IDFT of the ZC sequence (see Eq. 1.13), we have:

C[k] = F(c0)[0]
√
q

q−1∑
i=0

x∗u[−u−1k − pi]xu[−pi] exp
(
j2π ikK

)
(4.39)

with the first term of the normalized N-length IDFT: F−1(c0)[0] = F(c0)[0] = ± exp
(
±j π4

)
(see

Eq. 3.9). At the receiver, the correlation operation in frequency is done with the following sequence
of length K:

b[n] =
{
c0[l] , if n ≡ 0 mod (q) = lq
0 , otherwise (4.40)

An example of the sequence b for three CCSK symbols is provided in Figure 4.11.

Figure 4.11: Iterative correlation sequence considering 3 CCSK symbols.

The right-shifted cross-correlation of the sequences c and b, noted R, is expressed as:
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R[k] =
K−1∑
n=0

c[n]b∗[(n− k) mod (K)]

=
q−1∑
i=0

N−1∑
l=0

c[lq + i+ k]b∗[lq + i] with n− k ≡ lq + i mod (K)

=
N−1∑
l=0

c[lq + k]b∗[lq] because of the definition of b

=
N−1∑
l=0

c[(l + z)q + d]b∗[lq] with k = zq + d

=
N−1∑
l=0

cpd [(l + z) mod (N)]c∗0[l]

=
N−1∑
l=0

cpd [l]c∗0[(l − z) mod (N)] (4.41)

The last equation is exactly the cross-correlation of the sequence cpd with c0 estimated in z,
Rpd [z] = ∑N−1

l=0 cpd [l]c∗0[(l − z) mod (N)]. Hence, the cross-correlation between the sequences c and b
can be expressed with the cross-correlation of the original CCSK symbols. The mapping of the result
follows the iterative mapping. An example for three CCSK symbols is depicted in Figure 4.12.

Figure 4.12: Correlation with iterative mapping.

Consequently, the iterative mapping provides an efficient way to realize the demodulation of the
q CCSK symbols, as it is done in a single correlation operation instead of q. The output vector of
the correlation must then be reordered to separate the part corresponding to the correlation of each
CCSK symbol. The maximum argument of each part can then be taken, concluding the demodulation
of the symbols.

In our approach, the cross-correlation is computed with normalized DFT and IDFT operation.
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Considering the IDFT of the root sequence b:

B[k] = 1√
K

K−1∑
n=0

b[n] exp
(
j2πnkK

)

= 1√
K

N−1∑
l=0

b[lq] exp
(
j2π lqkK

)

= 1√
K

N−1∑
l=0

c0[l] exp
(
j2π lkN

)

= F(c0)[0]
√
q

x∗u[−u−1k] (4.42)

Hence, the energy of a sample is |B[k]|2 = 1
q . To normalize the IDFT, we need to multiply each

sample by √q, so that:
B[k] = F(c0)[0]x∗u[−u−1k] (4.43)

In this case, the cross-correlation is equal to:

R[k] = F(F−1(c)� F−1(b)∗)[k]

= 1√
K

K−1∑
n=0

C[n]B∗[n] exp
(
−j2πnkK

)

= 1√
qK

K−1∑
n=0

xu[−u−1n]
q−1∑
i=0

x∗u[−u−1n− pi]xu[−pi] exp
(
j2π inK

)
exp

(
−j2πnkK

)

= 1√
qK

q−1∑
i=0

K−1∑
n=0

exp
(
j2πn(piq + i− k)

K

)
(4.44)

The cross-correlation is not null when k = piq+ i, with a correlation score of
√

N. As expected, we
find the same result as in Eq.4.41, with the cross-correlation arrangement presented in Figure 4.12.

4.4.2 Scheme A

As stated before, the scheme A successively processes the CCSK modulation and the OFDM modu-
lation. Consequently, any sub-carriers mapping can be used, including the iterative mapping.

The Figures 4.13 and 4.14 respectively describe the transmitter and receiver A including the
iterative mapping. Again, the scheme A can consider empty sub-carriers at the transmitter and
receiver, and modulates other data in the sub-carriers not used by the CCSK symbols.

Figure 4.13: Transmitter A with iterative mapping.

At the receiver, the CCSK symbols are processed with a single operation of correlation over the K
sub-carriers. As stated before, we scale the conjugate of the DFT of the root sequence by a factor of√
q to retrieve a maximum cross-correlation of

√
N. Moreover, this normalization preserve the complex

noise distribution of CN (0, σ2) after the Hadamard product.
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Figure 4.14: Receiver A with iterative mapping.

The complexity of the DFT and IDFT operations can be reduced to O(K log(K)) with FFT
and IFFT implementations. Thus, it could be more interesting, in terms of number of operations,
to actually split the q received CCSK symbols, and process them individually in separated CCSK
demodulation chain instead of a single one. Each demodulation chain would run shorter DFT and
IDFT operations leading to a decrease in complexity. Yet, this remark may not be true, depending
on the actual implementation and the number of different DFT and IDFT sizes to consider, as well
as the system capacity to execute these operations in parallel.

4.4.3 Schemes B and C

Contrary to scheme A, the schemes B and C cannot use any kind of mapping for multiple CCSK
symbols transmission. Since the Hadamard product is done on the received (scheme B) or transmitted
(scheme C) OFDM symbol, the system cannot isolate the CCSK symbols mapped on the sub-carriers.
This property also constrains the system to use all the sub-carriers, but provides significant complexity
reduction.

The iterative mapping enables the multiple CCSK symbols transmission for the schemes B and C.
The Figure 4.15 describes the receiver B with the iterative mapping. As a reminder, the transmitter
B is equivalent to the transmitter A. The Figures 4.16 and 4.17 respectively depict the transmitter
and receiver C implementing the iterative mapping.

Figure 4.15: Receiver B with iterative mapping.

4.4.4 Performance Study

To complete the study on the multiple CCSK symbols transmission, the SER of the system under
an AWGN channel is studied. The performance curves are presented in the Figure 4.18. The label
OFDM CCSK ZC64 qX corresponds to the performance of a CCSK modulation using a ZC sequence
of size 64 with an iterative mapping of size q = X. When X = 1, the scheme is equivalent to a single
CCSK symbol transmission.
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Figure 4.16: Transmitter C with iterative mapping.

Figure 4.17: Receiver C with iterative mapping.

As for the single CCSK symbol transmission, the performances of scheme A, B or C are equivalent
(only one scheme is plotted). Since the energy spent per transmitted bit Eb does not depend on q,
the value of N0 is the same for a level of Eb

N0
and is independent of q. A direct consequence is that the

power of the noise in frequency is the same for all the sub-carriers, leading to error probability and
performance independent of q.

4.4.5 PAPR of Iterative Mapping

This section studies the impact of the iterative mapping on the PAPR. The Eq. 4.39 provides the
transmitted signal expression after the OFDM-IDFT operation (scheme A or B):

C[k] = F(xu)[0]
√
q

q−1∑
i=0

x∗u[−u−1k − pi]xu[−pi] exp
(
j2π ikK

)
(4.45)

The energy of the kth sample is defined as:

|C[k]|2 = |F(xu)[0]|2
q

q−1∑
i,l=0

x∗u[−u−1k − pi]xu[−u−1k − pl]xu[−pi]x∗u[−pl] exp
(
j2π (i− l)k

K

)
(4.46)

As detailed in Eq. 3.9 F(xu)[0] = ± exp
(
±j π4

)
, leading to |F(xu)[0]|2 = 1. Hence we have:
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Figure 4.18: SER vs Eb/N0 considering iterative mapping, AWGN channel.

|C[k]|2 = 1
q

q−1∑
i,l=0

exp
(
jπ
u(−u−1k − pi)2 − u(−u−1k − pl)2

N

)

exp
(
jπ
u(−pl)2 − u(−pi)2

N

)
exp

(
j2π (i− l)k

K

)

= 1
q

q−1∑
i,l=0

exp
(
jπ

2uu−1k(pi − pl) + u(p2
i − p2

l )
N

)
exp

(
jπ
up2

l − up2
i

N

)

exp
(
j2π (i− l)k

K

)

= 1
q

q−1∑
i,l=0

exp
(
jπ

2uu−1k(pi − pl)
N

)
exp

(
j2π (i− l)k

K

)
(4.47)

By definition, ∃α ∈ N so that uu−1 = αN + 1. Consequently, we obtain:
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|C[k]|2 = 1
q

q−1∑
i,l=0

exp
(
jπ

2k(pi − pl)
N

)
exp

(
j2π (i− l)k

K

)

= 1
q

q−1∑
i,l=0

exp
(
j2πkq(pi − pl) + (i− l)

K

)

= 1 + 1
q

q−1∑
i,l=0
i 6=l

exp
(
j2πkq(pi − pl) + (i− l)

K

)

= 1 + 2
q

q−1∑
i=1

i−1∑
l=0

cos
(

2πkq(pi − pl) + (i− l)
K

)
(4.48)

The maximum sample energy is reached if all the cosine are equal to 1, which is only the case
when k = 0. The maximum is then max(|C[k]|2) = q. The mean energy (or power) of the transmitted
samples is defined as:

1
K

K−1∑
k=0
|C[k]|2 = 1 + 1

qK

q−1∑
i,l=0
i 6=l

K−1∑
k=0

exp
(
j2πq(pi − pl) + (i− l)

K

)k
(4.49)

The remaining summations are applied to Kth roots of unity non equal to 1, which means that the
sums are null. The mean sample energy is then always equal to one. Finally, the PAPR associated
with the iterative mapping in scheme A and B is always equal to:

PAPRdB = 10 log10

(
|speak|2

sRMS2

)
= 10 log10(q) (4.50)

It is interesting to note that the PAPR is independent of the (pi)i∈[0;q−1], the ZC sequence index
or the sequence length N. Also, when q = 1, we retrieve the equality PAPRdB = 0.

In the case of the communication scheme C, an Hadamard product is applied between the IDFT
of the CCSK symbols, noted C, and the complex conjugate of the IDFT of the correlation sequence
b, noted B. The Hadamard product between C and B∗ (see Eq.4.43), noted X, is defined as:

X[k] = (C �B∗)[k] = |F0|2√
q
xu[−u−1k]

q−1∑
i=0

x∗u[−u−1k − pi]xu[−pi] exp
(
j2π ikK

)
(4.51)

The energy of the kth sample is:

|X[k]|2 = 1
q

q−1∑
i,l=0

exp
(
j2πkq(pi − pl) + (i− l)

K

)

= 1
q

q−1∑
i,l=0

exp
(
j2πkq(pi − pl) + (i− l)

K

)
(4.52)

From previous results, we directly obtained that max(|X[k]|2) = q and that 1
K
∑K−1
k=0 |X[k]|2 = 1.

The PAPR is then the same for all the schemes A, B and C, and is equal to 10 log10(q) dB.
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5 Fading Channel

5.1 Cyclic Prefix and Circular Convolution

The Cyclc Prefix (CP) is part of the CP-OFDM modulation, usually used in communication system
as the 4G and 5G communications systems. The CP is a copy of the end of the OFDM symbol (after
the IDFT), placed at the beginning of the OFDM symbol. The number of samples copied depends on
the system. At the receiver, the CP is removed before processing the DFT operation. The transmitter
and receiver of CP-OFDM are respectively described on Figure 5.1 and Figure 5.2.

Figure 5.1: Standard CP-OFDM transmitter.

Figure 5.2: Standard CP-OFDM receiver.

We consider a multipath channel with a Channel Impulse Response (CIR) of several taps, i.e. the
channel can be defined as a sequence of complex values [h0, h1, ..., hL−1], convoluted to the transmitted
signal. Usually, the taps are defined at symbol rate, so the CIR describes the temporal Inter-Symbols
Interference (ISI) due to multipath propagation. In the case of OFDM, this ISI results in breaking
the orthogonality of the sub-carriers.

Using the CP removes the ISI, allowing a one-tap channel equalization process in frequency. The
only condition is for the CP length to be superior or equal to the CIR length. To understand the effect
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of the CP, we consider a CIR of length L defined as h = [h0, h1, ..., hL−1] and a CP also of length L.
The transmitted signal a is defined as the sequence of length N + L time samples:

a = [a[N− L], ..., a[N− 1], a[0], ..., a[N− 1]] (5.1)

Affected by the propagation channel h, the received signal y is defined as the convolution of the
channel h with the signal a:

y[k] = (h ∗ a)[k] (5.2)

Removing the CP, the first L symbols of the OFDM symbol are affected by ISI from the CP
symbols, i.e. the last L symbols of the OFDM symbol. Hence the OFDM symbol appears as locally
N-periodic and the previous convolution becomes a circular convolution:

y[k] = (hN ~ a[L;N+L])[k] (5.3)

with hN the CIR padded with zero to length N and a[L;N+L] the OFDM symbol without CP. Using
the convolution theorem of the (discrete) Fourier transform, the DFT operation at the receiver can
be expressed as:

F(y)[k] = F(hN ~ a[L;N+L])[k] =
√

NF(hN)[k]F(a[L;N+L])[k] (5.4)

The term F(a[L;N+L]) correspond to the DFT of the OFDM symbol as in the standard OFDM
modulation. The first term however, correspond to the DFT of the channel on each sub-carrier.
Hence, after the DFT at the receiver, each symbol mapped on a sub-carrier is affected by a one-tap
channel, i.e. a complex scalar, equal to the unnormalized DFT of the channel at the corresponding
sub-carrier. This lead to a simple equalization process and is one of the reasons behind the success of
CP-OFDM.

Another explanation can be provided by a matrix-based description of the problem. The circular
convolution can be described by a standard matrix multiplication between a circulant matrix H and
the vector of symbols a:

y = Ha =



h0 0 0 . . . h2 h1
h1 h0 0 . . . h3 h2
h2 h1 h0 . . . h4 h3

. . . . . . . . .

. . . . . . . . .
0 0 0 . . . h1 h0




a[0]
a[1]

...
a[N− 1]

 (5.5)

The vector a contains the OFDM symbol without the CP. The matrix H is a square matrix of size
N, representing the circular convolution of the channel with a. A circulant matrix is a special case of
Toeplitz matrix, where each line is the right-shifted version of the one above. To simplify the following
equations, we define the first line of H as [h0, hN−1, hN−2, ..., h2, h1], with hN−1 = hN−2 = hL = 0.
The following lines are then right-shifted versions of the first one.

H =



h0 hN−1 hN−2 . . . h2 h1
h1 h0 hN−1 . . . h3 h2
h2 h1 h0 . . . h4 h3

. . . . . . . . .

. . . . . . . . .
hN−1 hN−2 hN−3 . . . h1 h0


(5.6)

It can be shown that any circulant matrix is diagonalizable on C. Its eigenvectors, which form a
basis of CN by definition, are the Fourier coefficients. The normalized eigenvector gk, for k ∈ [0; N−1],
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is defined as:

gk = 1√
N



1
exp

(
j2π kN

)
exp

(
j2π 2k

N

)
...

exp
(
j2π (N−1)k

N

)


(5.7)

The associated eigenvalue, noted λk, is defined as:

λk = h0 + hN−1 exp
(
j2π kN

)
+ hN−2 exp

(
j2π2k

N

)
+ ...+ h1 exp

(
j2π (N− 1)k

N

)
(5.8)

For the Nth root of unity, we have the equality exp
(
j2π nN

)
= exp

(
−j2πN−n

N

)
. This leads to:

λk =
N−1∑
n=0

hn exp
(
−j2πnkN

)
(5.9)

Consequently, the eigenvalue λk corresponds to the kth sample of the N-length unnormalized DFT
of the CIR (padded with zeros). This last observation is equivalent to the result of Equation 5.4.

Since H is diagonalizable, we have:
H = FHDF (5.10)

where ·H is the Hermitian transpose (or conjugate transpose, or adjoint matrix) operator, D is
the diagonal matrix where the diagonal elements are the eigenvalues of H and F is a unitary1 matrix
whose columns are the normalized eigenvectors of H in the canonical basis of CN:

F = 1√
N



1 1 . . . 1
1 exp

(
−j2π 1

N

)
. . . exp

(
−j2π (N−1)

N

)
1 exp

(
−j2π 2

N

)
. . . exp

(
−j2π 2(N−1)

N

)
...

...
1 exp

(
−j2π (N−1)

N

)
. . . exp

(
−j2π (N−1)2

N

)


(5.11)

Moreover, the matrix F also describes the DFT function of length N. Hence, computing the DFT
of a sequence x of length N, represented as a vector x, is defined as Fx. The elements of the resulting
vector are the elements of the DFT. The IDFT operation is realized by a multiplication with the
matrix FH.

Consequently, in the receiver, the DFT of y can be represented as:

F(y) = Fy
= FHx
= FFHDFx
= DFx (5.12)

Fx corresponds to the DFT of x, and each element is multiplied by the eigenvalues of H on the
diagonal of D.

5.2 Inclusion of the CP in Schemes A, B and C

The following sections present the modification of schemes A, B and C to include a CP. The CP is
always added just before the Radio Frequency (RF) block in the transmitter and removed just after
the RF block in the receiver. In this section, q CCSK symbols per OFDM symbol are considered with
an iterative mapping.

1FFH = I, with I the identity matrix.
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5.2.1 Scheme CP-A

The scheme CP-A realizes the CCSK modulation followed by the OFDM modulation without any
specific interaction between them. The CCSK symbol are simply mapped on the OFDM sub-carriers
as standard modulated symbols. Consequently, the usage of the CP is straightforward as showed in
Figure 5.3. After the DFT, the symbols of the CCSK are equalized. As described in Section 5.1,
this equalization has a single tap, leading to a simple process. The equalized CCSK symbol is then
demodulated. This standard receiver enables an efficient coherent demodulation of the CCSK symbol.

Figure 5.3: Receiver of scheme CP-A.

5.2.2 Scheme CP-B

The scheme CP-B applies an Hadamard product between the received OFDM symbol without the
CP and the conjugate of the IDFT of the root sequence, scaled by √q. The Figure 5.4 describes this
receiver.

Figure 5.4: Receiver of scheme CP-B.

To understand the impact of the Hadamard product, we consider the matrix representation of y,
without noise, as:

y = Hx = FHDFx (5.13)

where y is the vector of received samples, H is the circular channel matrix and x is the vector of
transmitted symbols. The matrices representing the DFT and IDFT operations are respectively noted
F and FH, with ·H is the Hermitian transpose (or conjugate transpose, or adjoint matrix) operator.
The DFT matrix is expressed as in Equation 5.11. The matrix D is diagonal, with the eigenvalues
of H on its diagonal. The vector of the root ZC sequence is noted c0 and the oversampled version is
defined as:

b[n] =
{
c0[l] , if n ≡ 0 mod (q) = lq
0 , otherwise (5.14)
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with the associated vector b. The transmitted samples are expressed as x = FHc, with the
sequence c defined as c[lq + i] = cpi [l], l ∈ [0; N − 1] and i ∈ [0; q − 1]. Finally, noting the vector or
matrix complex conjugate operator as , we obtain after the DFT in reception:

F(y�√qFHb) = √qF(FHDFx� FHb)
= √qF(FHDFFHc� FHb)
= √qF(FHDc� FHb) (5.15)

On the last equation, we recognize the formula of the right-shifted cross-correlation (see Eq.4.5)
scaled by 1√

N
between the sequences Dc and c0. Noting as λk for k ∈ [0; K− 1] the eigenvalues of H

corresponding to the unnormalized DFT of the CIR, the symbol on the ith sub-carrier is:

θ[i] = 1√
N

K−1∑
k=0

λkc[k]b∗[k − i] (5.16)

Without noise, the θ[i] represents the cross-correlation between the transmitted sequence affected
by the propagation channel in frequency and the root sequence. This expression is similar as the
Eq.4.41, but the summation is weighted by the λk. Consequently, the result is not easy to compute
as it depends on the correlation of the channel across the sub-carriers.

5.2.3 Scheme CP-C

The scheme CP-C applies the Hadamard product at the transmitter, before the CP block is added.
Ignoring the noise in the receiver, the CP is removed and the DFT of the samples y is expressed as:

Fy = √qFFHDF(FHc� FHb)
= √qDF(FHc� FHb) (5.17)

Consequently, the symbol on the ith sub-carrier is:

θ[i] = λi√
N

K−1∑
k=0

c[k]b∗[k − i] (5.18)

Hence, the symbol θ[i] is equal to the cross-correlation of the transmitted sequence and root
sequence which is equivalent to the usual case of Eq.4.41. The correlation value is weighted by
the complex channel coefficient on this sub-carrier. This means that the standard OFDM one-tap
equalization process can be used, as proposed on the Figure 5.5.

Figure 5.5: Receiver of scheme CP-C.

Noting the maximum correlation index set Is, we have:

θ[i] =
{
λi
√

N , if i ∈ Is
0 , otherwise (5.19)

Thus, without noise, the correlation absolute value depends solely on the channel coefficient. In
case of deep fading at the wrong sub-carrier, the correct shift value could be hidden by the noise.
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5.3 Channel Estimation

5.3.1 Pilots Positions

Channel estimation in CP-OFDM has been largely studied in the literature [14] [15]. The objective
of the channel estimation step is to get an estimation of the one tap channel complex value on each
data sub-carrier. In this regard, communications systems usually place pilots symbols on specific sub-
carriers, to be able to get an accurate channel estimation for these sub-carriers, and then interpolate
the channel to the rest of the sub-carriers. This technique is called Pilot-Symbol Assisted Modulation
(PSAM). One common way to position the pilots is described in Figure 5.6. In this case, the pilots
occupy entire OFDM symbols (in frequency). This pilots positioning is known as block pilots. After
the channel estimation at the pilot sub-carriers, the receiver can interpolate the channel in time to
obtain a channel estimation for the rest of the sub-carriers and then be able to equalize the channel.
In case of several OFDM symbols dedicated to pilots, this supposes to first receive the whole frame
(all the OFDM symbols) and then process the interpolation. Block type arrangement are well suited
for slowly varying channel (slow fading) and highly frequency selective channel [16].

Figure 5.6: Block-type pilots arrangement.

Another pilots positioning is proposed in Figure 5.7. The pilots are spread in time, always on the
same sub-carriers. In this case, the receiver interpolates the channel in frequency to get the channel
values on the data sub-carriers. This arrangement, the comb-type, is adapted to fast fading but is
more sensitive to frequency selectivity [16].

A sparse version of the pilots positioning is presented in Figure 5.8. The interpolation will then be
processed in frequency and time, as either a 2D process or on one dimension and then another. The
quality of the interpolation depends on the algorithm used, but also on the channel auto-correlation
function in frequency and time.

From now on, we assume that the channel is a wide-sens stationary process, with uncorrelated
paths. The channel coherence bandwidth dictates the correlation between channel values on different
sub-carriers. If the channel coherence bandwidth is far larger than the system bandwidth, one can
assume the channel as constant on all the sub-carriers of an OFDM symbol. In this case, the CIR is
a one-tap channel: there is no ISI (in time) and the channel is not frequency selective. Such a fading
is said flat. If the channel has a multi-tap CIR, the channel coherence bandwidth is then shorter
than the system bandwidth, and the channel is not constant in frequency. The channel coherence
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Figure 5.7: Comb-type pilots arrangement.

bandwidth is inversely proportional to the root mean square delay spread:

B ≈ 1
τrms

(5.20)

where τrms is the root mean square delay spread of the channel, which represents the dispersion of
the channel power in time. Hence, the higher the channel power spreading, the shorter the coherence
bandwidth.

The channel time correlation on each sub-carrier depends on the maximum Doppler shift. The
larger the Doppler shift, the quicker the channel evolves in time, resulting in a shorter channel coher-
ence time. If the maximum Doppler shift is null, the channel on each sub-carrier is then constant in
time. The (one-sided) maximum Doppler shift fmax and a definition of the channel coherence time T
are:

fmax = v

c
fc

T ≈ 1
fmax

(5.21)

where v is the relative movement speed of the transmitter from the receiver in m/s, c is the light
speed and fc is the carrier frequency.

Consequently, there is a minimal channel sampling rate in time and frequency to be able to capture
its evolutions. The sampling theorem tells us that the pilots positions have to respect the following
rules [17] [18] [19]:

• Noting τmax the maximum path delay in second and ∆f the sub-carrier spacing in Hz, the pilot
spacing in frequency Nk should respect the following inequality:

Nk ≤
1

τmax∆f
(5.22)

• Noting TSymbol the total duration of the OFDM symbol and CP in second, the pilot spacing in
time Nn should respect the following inequality:

Nn ≤
1

2fmaxTSymbol
(5.23)

An oversampling of four seems to be a good balance between performance and transmission effi-
ciency [18].
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Figure 5.8: Sparse pilots positioning.

5.3.2 Least-Square Estimation

We assume an OFDM communication system transmitting an OFDM frame constituted of S OFDM
symbols of K sub-carriers each. In the frequency domain, the received nth OFDM symbol is expressed
as:

yn = Xnhn + wn (5.24)

where yn = [y0,n, . . . , yK−1,n]T ∈ CK×1 is the vector of received complex symbols on each sub-
carriers, wn = [w0,n, . . . , wK−1,n]T ∈ CK×1 is the vector of AWGN samples, Xn is a diagonal ma-
trix of size K × K containing the transmitted complex symbols xk,n on each sub-carrier and hn =
[h0,n, . . . , hK−1,n]T ∈ CK×1 is the vector containing the unnormalized DFT of the time channel CIR
of size L padded with zeros to a size of K. We note (p, np) the sub-carrier and OFDM symbol indices
of any pilot. The Least-Square (LS) estimate is the solution of the following equation:

hLS
np = argmin

h
‖Xnph− ynp‖2 (5.25)

In the single tap channel case, and for non null pilots, the solution is simply:

hLS
np = X−1

np ynp (5.26)

Hence, the LS estimate of the channel at pilots sub-carriers is defined as:

hLS
p,np =

yp,np
xp,np

= hp,np +
wp,np
xp,np

(5.27)

If we assume that the complex pilots are on the unit circle, so that the resulting noise component
has the same distribution as wp,np , we have hLS

p,np = hp,np + w′p,np . Hence, the LS estimate is directly
affected by a complex Gaussian noise.

5.3.3 LMMSE Estimations

The optimal channel estimation algorithm, in the mean square sens, is the Linear Minimum Mean
Square Estimator (LMMSE). Related to the 1D version of the Wiener filter [17] [20] [15] [18], and
developed in [21] [22], the LMMSE estimate solves the following equation:

hLMMSE
k,n = argmin

h̃∈C
E[|hk,n − h̃|2] (5.28)
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The following expressions assume block-type pilot positioning, so all the sub-carriers of one or
several OFDM symbols are filled with pilots symbols. In frequency, the LMMSE estimate in a pilot
OFDM symbol of index np is defined as:

hLMMSE
np = Rhh(Rhh + σ2(XnpXH

np)
−1)−1hLS

np (5.29)

where Rhh is the channel frequency auto-correlation matrix, defined as Rhh = E[hhH], σ2 is the
noise variance, Xnp is the diagonal matrix containing the pilots symbols of the OFDM symbol np
on its diagonal, and hLS

np is the LS channel estimate of the channel in the OFDM symbol np. The
block Rhh(Rhh + σ2(XnpXH

np)−1)−1 acts as a noise smoothing filter on hLS
np to improve the channel

estimation. The performance of the LMMSE are close to those of a perfect channel knowledge [15].
Note that the LMMSE can also be applied in time with comb-type pilots arrangement. In this case,
Rhh is the time auto-correlation matrix. Finally, the noise power σ2 is supposed known or can be
approximated by the system.

The LMMSE formula implies expensive computation, do to large matrix inversions and multipli-
cation, and computation of the channel auto-covariance matrix Rhh. Consequently, several simplifi-
cations of the above formula are available in the literature [15]. First of all, assuming that the pilots
are of constant unitary power, so that |xp,np |2 = 1, we obtain the first common simplification of the
formula as:

hLMMSE
np = Rhh(Rhh + σ2Id)−1hLS

np (5.30)

where Id is the identity matrix of dimension K × K. Another simplification comes from the fact
that Rhh is Hermitian and thus is diagonalisable in C as Rhh = UDUH, with U a unitary matrix
composed by the eigenvectors and D a diagonal matrix containing the real eigenvalues of Rhh on its
diagonal, noted λk for k ∈ [0,K− 1] [22]. The LMMSE estimate can then be expressed as:

hLMMSE
np = UDσUHhLS

np (5.31)

where Dσ is a diagonal matrix, with its diagonal elements expressed as:

δk = λk
λk + σ2 (5.32)

With this diagonalisation, no computation intensive matrix inversion is needed and the final com-
plexity is greatly decrease. The last problem is that, in real life cases, the channel auto-correlation ma-
trix is not known. A common way to circumvent this problem is the Low-Rank Approximation (LRA),
which assumes a generic channel power delay profile and pre-computes the auto-correlation matrix and
the eigenvalues. The power delay profile of a channel is a function of the delay providing the power
of the channel in time. Two common power delay profiles are used. The first one is the exponentially
decaying power delay profile, expressed as:

Γ(τ) = C exp
(
− τ

τrms

)
(5.33)

with C a normalization coefficient and τrms the root mean square delay spread of the channel. For
this power delay profile, the element (u, v) of the normalized auto-correlation matrix is equal to [22]
[18]:

(Rhh)u,v =
1− exp

(
− τmax
τrms

)
exp

(
−j2π τmax(u−v)

K

)
(1− exp

(
− τmax
τrms

)
)(1 + j2π τrms(u−v)

K )
(5.34)

where τmax and τrms are normalized by the sampling time. The normalization implies (Rhh)u,u =
E[|hu|2] = 1. Since the value of τrms and τmax are not known a priori, it is possible to consider
τrms = τmax and τmax equal to the CP number of samples [15]. In this case, the power delay profile
becomes:

Γ(τ) = C exp
(
− τ

τmax

)
(5.35)
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and the auto-correlation matrix becomes:

(Rhh)u,v =
1− exp (−1) exp

(
−j2π τmax(u−v)

K

)
(1− exp (−1))(1 + j2π τmax(u−v)

K )
(5.36)

The second commonly used power delay profile is the constant one:

Γ(τ) = C (5.37)

Leading to the normalized auto-correlation matrix [15][22]:

(Rhh)u,v =


1−exp

(
−j2π τmax(u−v)

K

)
j2π τmax(u−v)

K
, when u 6= v

1 , when u = v
(5.38)

In both cases, the performances are usually between those of the exact LMMSE estimate and
those of the LS estimate. The gap depends on the actual nature of the channel auto-correlation
matrix [15]. Nevertheless, these two approximations offer a good compromise between performance
and complexity. Other low complexity methods to obtain the channel auto-correlation and to estimate
the noise variance are presented in [15].

5.3.4 Interpolation Algorithms

After channel estimation at pilot positions, the system still needs to provide an estimation at data
positions. Interpolation algorithms are used to provide these channel estimations based on computed
LS or (LRA-)LMMSE estimates. Looking at the OFDM frame as a 2D matrix, the optimal inter-
polation would be in 2D (Wiener Filter) [17] [18], but for complexity reason, it is usually done in
(2x)1D. In this study, we consider an interpolation done first in frequency and then in time to map
the whole OFDM frame with channel estimates. We also suppose that the pilots positions respect
the sampling conditions provided in section 5.3.1. Consequently and for the purpose of clarity in the
following sections, the interpolators operate only in frequency, on an arbitrary OFDM symbol where
channel estimates has been computed at Np < K sub-carriers. The interpolators are presented in
expected increasing performance order [23] [16] [24]. After the interpolation in frequency, the same
interpolators can be used in time, reusing the same equations.

Nearest Neighbour Interpolator

The nearest neighbour interpolator simply takes the closest channel estimate in terms of sub-carrier
index as the channel interpolate. This is the simplest interpolator possible, as no new computation
is necessary. This interpolation algorithm can be of interest if the channel is highly correlated in
frequency (or slowly evolving in time for time interpolation).

Linear Interpolator

We assume that two consecutive pilots are separated by a constant gap of M sub-carriers in frequency.
The channel interpolate at sub-carrier position kM + m, between pilots at sub-carrier positions kM
and (k + 1)M, with 0 ≤ m ≤ M, is equal to:

h̃kM+m = hkM +
(h(k+1)M − hkM)m

M (5.39)

where hkM and h(k+1)M are respectively the channel estimates at pilots kM and (k + 1)M. For
estimation at the edge, where there is no h(k+1)M, we use the condition h(k+1)M = hkM.
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Second-Order Polynomial Interpolator

With same assumptions and with the edge condition h(k+1)M = hkM = h(k−1)M, the second-order
polynomial interpolator is expressed as:

h̃kM+m = α(α− 1)
2 h(k−1)M − (α2 − 1)hkM + α(α+ 1)

2 h(k+1)M (5.40)

where α = m
M .

Spline Cubic Interpolator

The concept behind the spline cubic interpolation is to construct a piece-wise function as third degree
polynomials, that interpolates through all data points, is continuous over the whole interpolation
interval, and the first and second derivative are also continuous (see [25] for a description of the
algorithm). In this study, we have implemented a spline cubic interpolator that verify the “natural”
condition, making the second derivative at endpoints equals to zero.

LMMSE Interpolator

The optimal interpolator in the sens of Mean Square Error (MSE) is the LMMSE [22]. To use the
LMMSE algorithm as an interpolator, we modify the Eq.5.30 as (the dimension of the matrices has
been noted as a subscript for clarity):

hLMMSE
K×1 = RhhK×Np(RhhNp×Np + σ2IdNp×Np)−1hLS

Np×1 (5.41)

where hLS
Np×1 is the LS channel estimate at the pilots sub-carriers, considering Np sub-carriers;

RhhNp×Np is the auto-correlation matrix Rhh where only the rows and columns corresponding to the
pilots sub-carriers positions has been extracted; RhhK×Np is the auto-correlation matrix Rhh where
only the columns corresponding to the pilots sub-carriers positions has been taken. The LMMSE
interpolation can be used with the LRA approximations, but the Singular Value Decomposition (SVD)
simplification of Eq.5.31 is not possible since the matrix are not square anymore.

Instead of interpolating, one can compute the LMMSE estimates at the Np positions by replacing
the auto-correlation matrix Rhh by RhhNp×Np in Eq.5.30. The LMMSE estimates is more accurate
than their LS counterpart and can be used as inputs of other interpolation algorithms.

5.4 Zero-Forcing Equalizer

The Zero-Forcing (ZF) equalizer [26] is commonly used in CP-OFDM systems where each sub-carrier
is affected by flatfading. In this case, the ZF equalizer is equivalent to the match filtering and the
minimum mean square equalizer. To retrieve an estimate of the data xk transmitted on sub-carrier k,
the ZF equalizes the received data yk with the estimated channel h̃k:

x̃k = yk

h̃k
= xk

hk

h̃k
+ wk

h̃k
(5.42)

where wk is the noise sample. Consequently, the ZF equalizer suffers from deep fading in frequency:
when the channel magnitude at the sub-carrier is close to null, the noise sample is amplified and the
information is lost. Hence, channel diversity is important to ensure that all the data sub-carriers are
not affected by a deep fading at the same time.

5.5 Diversity Combining

As said above, the ZF equalizer is commonly used to retrieve the data symbol on each sub-carrier. Yet,
in the case of the CCSK modulation, a cross-correlation along the sub-carriers has to be computed
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to retrieve the modulated information. This means that the equalization should take into account
the correlation operation. The ZF equalization would mitigate the correlation score, as deeply faded
sub-carrier would increase the noise samples. Since the cross-correlation is equivalent to a weighted
sum, the problem becomes a diversity combining one [27] [28]. With the right weights, the correlation
can be improved by using the channel diversity across the sub-carriers.

In the following, we consider the Maximum Ratio Combining (MRC) for the diversity combining.
The MRC multiplies each sub-carrier by the complex conjugate of the channel and normalizes the
result. It acts as an equalizer, in addition to maximizing the resulting Signal to Noise Ratio (SNR)
after the correlation. The traditional MRC equation is:

r =
∑K−1
k=0 h

∗
kyk∑K−1

n=0 |hn|2
(5.43)

5.6 Flatfading Performance

5.6.1 System Model

In the following, the system is designed with the following assumptions and described in Figure 5.9:

• The transmitter and receiver are based on CP-OFDM and CCSK schemes A, B or C. The CP
length is fixed to 10 symbols, which is always longer than the channel length.

• The dimension of the OFDM symbol is equal to she size of the ZC sequence, and noted N = 64.
Consequently, each OFDM symbol carries a single ZC sequence, corresponding to a single CCSK
symbol, representing binary word of 6 bits.

• We do not use the iterative mapping to simplify the system, the explanations and the equations.
Also the inclusion of the iterative mapping would only marginally modify the performances, as
it would only change the interaction with the channel frequency diversity parameter.

• The OFDM frame is composed of 20 successive OFDM symbols.

• The first and the last OFDM symbols are used as block pilot symbols. Hence the channel is
estimated on each sub-carrier in the first and last OFDM symbols, and then interpolated with
the linear interpolator in time over the data symbols. We use the root ZC sequence for the pilots
symbols.

• We use the MRC scheme as an equalizer to improve the cross-correlation operation and the
performance of the systems.

• The received signal is in base-band, perfectly synchronized at symbol rate.

In this section, the propagation channel considered is a single tap channel. We use the usual
Clarke’s 2D isotropic model [29][30] to generate the channel coefficients. Consequently, the channel
impulse response is described as a single complex coefficient ht, whose amplitude follows a normalized
Rayleigh distribution R( 1√

2), so that ht = hr + jhi and hr ∼ N (0, 1
2), hi ∼ N (0, 1

2) and E[|ht|2] = 1.
Its phase is uniformly distributed on [0; 2π].

Because of its single tap nature, the channel is constant in frequency, also known as flatfading.
The channel on any sub-carrier k, hk, is equal to ht. Hence, the normalization in time also leads to
the normalization in frequency with E[|hk|2] = 1 for 0 ≤ k < N.

5.6.2 Constant Channel

Equalization schemes

We first assume that the channel is constant over the whole OFDM frame. Equivalently, the maximum
Doppler shift is equal to zero. In Figure 5.10, we compare standard approaches presented in section
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Figure 5.9: Description of the OFDM Frame.

5.3. A basic nearest neighbor time interpolator is here considered. All these schemes use the previously
defined CCSK scheme A. The real part of the cross-correlation value is taken.

Five different equalizers are compared. The worst performance are obtained by the LS equalizer, as
it is the more basic one. The two LMMSE approximations LRA-LMMSE-Uniform and LRA-LMMSE-
ExpTmax respectively use the approximations of equations Eq.5.37 and Eq.5.35. The true noise power
is used to compute the auto-correlation matrices, even if this supposition can be alleviate by using
a dedicated estimator or a low enough fixed value [22]. The value of τmax is fixed and equal to the
CP length. Both estimators provides similar results. The LMMSE equalizer uses the exact channel
auto-correlation matrix, computed from the channel distribution and noise power. The LMMSE leads
to the same results as the perfect channel estimation, named perfectCSI, in the case of a constant
flatfading channel. The perfect channel estimation scheme uses the exact channel at all sub-carriers,
including the data sub-carriers. No interpolation is done. This is the best performance obtainable by
this system. To conclude, the uniform and exponential LMMSE approximation provides here a good
trade-off between performances and complexity.

Schemes without equalization

The three CCSK schemes A, B and C are now considered without channel equalization. The data
symbols are demodulated as such after the DFT at the receiver. The absolute value of the correlation
is here taken instead of the real part. At first, we still consider the two block-pilot OFDM symbols, to
keep the same Eb/N0 ratio than the conventional schemes. The results are presented in Figure 5.11.

All three schemes without equalization have the same performances as the perfect channel estima-
tion with absolute value system. To explain this equality, we take a look at the equalized symbols.
As a reminder, the symbol on the ith sub-carrier after the receiver DFT, for each scheme A, B and C,
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Figure 5.10: SER vs Eb/N0 with constant Rayleigh flatfading.

without equalization is respectively equal to:

θA[i] = h[i]c[i] + w[i] (5.44)

θB[i] = 1√
N

N−1∑
k=0

h[k]c[k]c∗0[k − i] + w[k] (5.45)

θC[i] =
{
h[i]
√

N + w[i] , if i = p
w[i] , otherwise (5.46)

To improve the clarity, we have adopted here the sequence element notation [i] to designate the
ith element of a vector or a sequence, instead of the subscript ·i notation. The samples of the noise
sequence w have a complex white Gaussian noise of distribution CN (0, σ2). The transmitted CCSK
sequence of interest is shifted by a value p.

In the case of the scheme C, taking the absolute value of the sub-carriers symbols and considering
that h[i] = h ∀i (flatfading) lead to:

θC[i] =
{
|h
√

N + w[p]| , if i = p
|w[i]| , otherwise (5.47)

The system then take the argmax to find the most probable shift value.
In case of scheme B, since h[k] = h ∀k it can be taken out of the sum. The usual ZC cross-

correlation formula appears, leading to:

θB[i] =
{
|h
√

N + w[p]| , if i = p
|w[i]| , otherwise (5.48)
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Figure 5.11: SER vs Eb/N0 with constant Rayleigh flatfading.

For the scheme A, the cross-correlation operation gives the equation:

RA[i] =
∣∣∣∣∣ 1√

N

N−1∑
k=0

h[k]c[k]c∗0[k − i] + w[k]c∗0[k − i]
∣∣∣∣∣

RA[i] =
∣∣∣∣∣ 1√

N
h

N−1∑
k=0

c[k]c∗0[k − i] + w′[k]
∣∣∣∣∣

RA[i] =
{
|h
√

N + w′[p]| , if i = p
|w′[i]| , otherwise (5.49)

The noise samples of the sequences w and w′ have the same distribution. Consequently, all three
schemes A, B and C, when not equalized in a flatfading channel, have the same performance, as
illustrated in Figure 5.11. They reach the same level of performances as the perfect channel estimation
with absolute value. In the latter case, the ith sub-carrier coefficient after the MRC equalization is
equal to:

θperfect[i] = c[i] + w[i]
h

(5.50)

In the latter equality, we have remove a 1
N scaling factor as it has no impact on the noise and data

ratio. Computing the cross-correlation for the CCSK demodulation and taking the absolute value of
the result leads to the cases:

Rperfect[i] =
{
|
√

N + w′[p]
h | , if i = p

|w
′[i]
h | , otherwise

(5.51)

Non equalized schemes and the perfect channel estimation equations are linked by a multiplication
by |h|, explaining the performance equality when looking at the argmax value. Nevertheless, when the
real part of the perfect channel estimation is taken, the performances are improved as the imaginary
part of the noise is removed from the equation, without impacting the cross-correlation result. It
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would not be the case for the schemes without equalization, as the complex scalar value h may rotate
the correlation score

√
N into the imaginary region, nullifying the result. This aspect is studied in the

next section.
For the sake of completeness, the Figure 5.12 provides the performances of the non equalized

schemes with the correct Eb/N0 values. For these schemes, the two block OFDM symbols used as
pilots should not be taken into account when computing the actual Eb value as they are not used
by the system. As expected, the results show a small gain (around 0.46dB) compared to the equal
Eb/N0 case. The gain would be greater if the frame was shorter or, equivalently, if the number of
pilot OFDM symbols was higher. In the current system, as the difference does not change the ranking
of the studied schemes and does not have an impact on the conclusion of the study, we keep the equal
Eb/N0 assumption, unless explicitly notify.

Figure 5.12: SER vs Eb/N0 with constant Rayleigh flatfading, fixed Eb/N0 values.

Absolute Value Versus Real Part

We want to compare the impact of taking the absolute value compared to the real part of the cross-
correlation score. The correlation value should be a real integer when the summation is not affected
by the channel and the noise. In the case of an AWGN channel, the Figure 4.9 showed the decrease
in performance when the absolute value is considered as it includes the real and imaginary part of the
noise. In case of a propagation channel, the resulting correlation score may be multiplied by a complex
scalar if the channel is not perfectly equalized. In Figure 5.13, all the schemes equalizing the channel
improve their performance when using the real part of the correlation. The remaining phase shift in
the correlation score caused by the unperfectly equalized channel is less detrimental than adding the
energy of the imaginary part of the noise.

The scheme A without equalization, as well as the scheme B and C, cannot use the real part
operator as the random phase shift included in the channel scalar value may rotate the real correlation
score into the imaginary region.
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Figure 5.13: SER vs Eb/N0 with constant Rayleigh flatfading.

Maximum Ratio Combining Versus Zero Forcing

Finally, in Figure 5.14, we compare the MRC and ZF equalizers. As stated before, since the real part
of the correlation score provides better performances, it is taken from now on, except for schemes
without equalization. As expected, the MRC approach gives the best performances as it is expected
to maximize the SNR at the right correlation index, i.e. when all the element of the cross-correlation
should be equal to one. Nevertheless, we couldn’t provide a theoretical analysis, proving that the MRC
is the best diversity combining and equalization scheme in case of a cross-correlation computation.
This would mean that the MRC maximize the difference between the value at the right correlation
index and all the other correlation indices.

In addition, in Figure 5.14, both perfect channel estimation schemes have the same performances,
as the MRC and ZF result in the same sub-carrier symbol value when the channel is perfectly estimated
in flatfading condition.

Constant Channel Conclusion

In conclusion, when the channel is flat in frequency and constant in time, and in perfect time and
frequency synchronization conditions, schemes A, B or C without channel equalization clearly provide
the best performances for very low complexity.

Moreover, for conventional scheme, it is better to consider the MRC approach and the real part of
the correlation.

5.6.3 Block Fading

We now consider that the flatfading channel is evolving in time. A block fading model is used and
the channel is considered constant on each OFDM symbol, but evolving between them. The channel
time correlation is linked to the maximum Doppler shift. The higher the Doppler shift, the lower
the correlation between channels affecting adjacent OFDM symbols. In the context of terrestrial IoT
communications, the propagation channel is usually considered to be slowly evolving. Indeed, the
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Figure 5.14: SER vs Eb/N0 with constant Rayleigh flatfading.

static or low speed nature of many IoT systems, leads to a radio environment almost static at the
scale of the data frame. However, this study try to also address broader use cases and show the system
limits when the channel evolves to fast.

Impact of the Time Interpolator

We consider a transmission at 900 MHz central frequency and 15 kHz sub-carrier spacing. The
total bandwidth of the system is 960 kHz. To obtain the channel between the first and last OFDM
symbols, where the pilots are, we test two interpolation techniques presented in section 5.3.4: the
nearest neighbor and the linear interpolator. The latter was used in the previous section. The results
are presented in Figures 5.15 to 5.18, with a maximum Doppler shift of 0, 50, 100 and 200Hz. These
maximum Doppler shifts are respectively equivalent to a device speed of 0 km/h, 60 km/h, 120 km/h
and 240 km/h and can be interpreted as static, medium, fast and very fast channel evolution rate.

For the LS and the LRA-LMMSE-Uniform approximation, the benefit of the linear interpolator
over the nearest-neighbor is clear. The linear interpolator describes a progressive evolution of the
channel between the start and the end of the OFDM frame. On the contrary, the nearest-neighbor
assigns the first channel estimation to the first half of the frame, and the second channel estimation to
the second half of the frame. Hence it cannot describe the natural evolution of the channel along the
time. This becomes obvious in the 200 Hz Doppler shift case, where both curves reach a performance
floor, because the equalizers use an outdated channel estimation, uncorrelated with the real channel.
The linear interpolator is more resilient, but it also starts to fail at 200 Hz Doppler shift, because
the two pilots OFDM symbols are too far apart for the interpolator to represent the dynamic of the
channel.

The perfect channel estimation SER performance is not affected by the channel time diversity,
as the channel is always perfectly known and equalized. An equivalent remark can be made for the
schemes A, B or C without equalization, as the flatfading channel is never estimated.
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Figure 5.15: SER vs Eb/N0 with evolving Rayleigh flatfading, maximum Doppler shift of 0Hz.

Figure 5.16: SER vs Eb/N0 with evolving Rayleigh flatfading, maximum Doppler shift of 50Hz.
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Figure 5.17: SER vs Eb/N0 with evolving Rayleigh flatfading, maximum Doppler shift of 100Hz.

Effect on Block Error Rate

While the SER performance of the perfect channel estimation is not affected by the channel time
evolution rate, the Block Error Rate (BLER) performance decrease with more channel diversity. As
there is no method included in the system to take advantage of the time diversity, like an error
correcting code, the increasing Doppler shift results in an increased chance of experiencing a poor
channel within an OFDM frame. Hence an increased BLER.

Block Fading Conclusion

In conclusion, if the channel is known to be a flatfading one, and in perfect time and frequency
synchronization conditions, it is sufficient to consider any CCSK scheme without equalization. This
leads to a low complexity receiver, reaching performance close to the perfect channel estimation ones.
The model is valid independently of the channel evolution speed, as long as the orthogonality between
the sub-carriers is guaranteed. Yet, this model is limited to flatfading channel, which may mot be
the case in standard IoT transmission conditions. While the channel may be slowly evolving, the
propagation environment is usually indoor or urban, leading to multiple paths, even at the scale of
the current system bandwidth. Moreover, frequency selective channels may provide channel frequency
diversity for our system, that the current MRC can use to improve the performance.

5.7 Frequency Selective Fading Performance

5.7.1 System Model

In this section we consider a frequency selective channel instead of a flatfading one. The system is
described as follow:

• The OFDM frame is still composed of 20 OFDM symbols, with the first and last one used as
block pilots, and a linear interpolator is used in time. The CP length is 10 symbols long, which
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Figure 5.18: SER vs Eb/N0 with evolving Rayleigh flatfading, maximum Doppler shift of 200Hz.

is always longer than the channel.

• The CCSK sequences are ZC sequences of length 64. The system still consider that a single
CCSK sequence is carried by an OFDM symbol. The MRC equalizer is also used.

• By lack of time, the iterative mapping is not studied in the following sections. Nevertheless, it
can bring interesting results and system design when the channel is evolving in frequency. This
case need to be developed in a different study.

• The channel coefficients are not anymore constant in frequency and vary along the sub-carriers.
Hence, in time, the channel does not appear as a single path anymore, but as a multipath channel
introducing ISI in time.

• Between successive OFDM symbols, the channel on the same sub-carrier is constant, i.e. the
maximum Doppler shift is fixed to 0Hz.

• The system still assumes a perfect synchronization in time and frequency at symbol rate.

In time, the channel is modeled as a succession of L main paths (or taps) associated with different
delays, summarized in the CIR. Again, we use the Clarke’s 2D isotropic model. The complex coef-
ficients of each path are independent and follows the same distribution: the magnitude is Rayleigh
distributed and the phase is uniformly distributed. Different powers are associated to each path, but
the total power is normalized so that ∑L−1

t=0 E[|h[t]|2] = 1.
To better simulate the impact of the multipath channel, the transmitted and received signals are

oversampled by a factor of 4. At the transmitter, the CCSK symbols are still mapped around DC,
but zeros are added at the edge of the spectrum. For a CCSK symbol of size N, 1.5N zeros are
placed on each side. Applying the IDFT operator to that spectrum results in an oversampling of 4 of
the actual CCSK symbol, and is equivalent to apply a cyclic sinc filter in time. The CP takes into
account the oversampled symbols. To normalize the useful energy within the spectrum, we multiply
the transmitted oversampled signal by 2 (=

√
4). At the receiver, the signal is downsampled by 4 (with
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Figure 5.19: BLER vs Eb/N0 with evolving Rayleigh flatfading, maximum Doppler shift from 0Hz to
200Hz.

perfect synchronization) and, after removing the CP, the DFT operator can be directly applied to
retrieve the sent CCSK symbols. Because the spectrum outside the CCSK symbol are zeros, there is
no aliasing in frequency.

To characterize the selectiveness in frequency, we use the Root Mean Square (RMS) delay spread
characteristic of the CIR. By manually increasing the RMS delay spread, the CIR is stretched in
time, but the relative delays between the channel paths are kept2. As explained in Eq.5.20, a higher
RMS delay spread decreases the coherence bandwidth, implying that a longer CIR leads to more ISI
(in time) and a channel becomes more selective in frequency. Since the CP is designed to always be
longer than the CIR, the channel coefficients on each sub-carrier is equal to the unnormalized DFT of
the actual time channel vector padded with zeros to the size of the DFT.

To obtain the channel coefficient at a sample instant we need to use an interpolation method. The
interpolation is done by a sinc filter at sample rate. Each path is first filtered independently to obtain
the complex coefficients at each sample time. Then, the sum of all the interpolated paths provides
the final complex channel coefficients.

Two examples are provided in Figures 5.20 and 5.21, where the base channel model is the EPA
model described in Table 5.7.1, and the RMS delay spread has been respectively fixed to 100ns and
400ns. The oversampled CIR at sample time is represented by the blue dots on the figures, considering
an oversampling of 4. The figures highlight the link between the increase of the RMS delay spread, the
increase of the ISI in time, and consequently the increase of the frequency selectivity. To decrease the
system complexity, we restrict the final CIR length so it always contains at least 99% of the channel
power and we normalize it to an accumulated power of 1.

2The base channel model paths delays are normalized to have a unit RMS. Then, the paths delays are scaled by the
desired RMS value.
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path delays (normalized) powers (dB, relative)
0 0.00 0.0
1 0.70 -1.0
2 1.62 -2.0
3 2.09 -3.0
4 2.55 -8.0
5 4.41 -17.2
6 9.51 -20.8

Table 5.1: EPA channel model, with paths delays normalized by the RMS delay spread and paths
power in dB relative to the most powerful path.

5.7.2 Effect of the Frequency Diversity

To observe the effect of an increasing channel diversity in frequency, four RMS delay spreads are
evaluated: 0ns in Figure 5.22, 100ns in Figure 5.23, 200ns in Figure 5.24 and 400ns in Figure 5.25.

Firstly, the CCSK schemes A and B without equalization suffer from the increased channel fre-
quency diversity. Since the channel is not constant in frequency, the complex value h cannot be taken
out of the sum in Eq.5.45 and Eq.5.49. Consequently, the summations include uncorrelated complex
channel scalars, mitigating the correlation values when the channel diversity increases. To compute
the Eb/N0, the two pilot OFDM symbols are again taken into account to facilitate the comparison
with other schemes and as it does not change our analysis and conclusion.

On the contrary, the CCSK scheme C is not influenced by the frequency diversity, since the
correlation value is scaled by the channel coefficient of a single sub-carrier after the OFDM DFT.
Consequently, the performance are the same as in the flatfading case. It is also an inconvenient, as
the scheme do not benefit from the channel frequency diversity.

The other schemes that use channel estimation and equalization benefit from the channel frequency
diversity. The MRC equalization takes advantage of the varying channel quality along the sub-carriers
to improve on average the SNR after the correlation.3 This leads to better performances on average
since there is a higher chance to correctly demodulate the CCSK sequence. This is symbolized by
the crossing point between the scheme C without equalization and the LS curves being progressively
shifted to lower Eb/N0 when the channel diversity increases.

Consequently, when the channel presents enough frequency selectivity, it becomes more interesting
to use channel estimation and equalization schemes. LS and LRA-LMMSE Uniform algorithms provide
a good balance between performance and complexity.

3A theoretical study has to be conducted to evaluate the gain achieved by the increasing channel diversity on the
average SNR and more generally on the correct demodulation probability gain. This work do not include such study.
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Figure 5.20: Representation of the sampled CIR power with an oversampling factor of 4. Base
channel model paths with a RMS delay spread of 100ns are drawn as red lines. Blue dots represent
the interpolated channel power at each sample time.

Figure 5.22: SER vs Eb/N0 with flatfading channel and constant channel in time.
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Figure 5.21: Representation of the sampled CIR power with an oversampling factor of 4. Base
channel model paths with a RMS delay spread of 400ns are drawn as red lines. Blue dots represent
the interpolated channel power at each sample time.

Figure 5.23: SER vs Eb/N0 with constant selective fading channel, maximum Doppler shift of 0Hz
and 100ns RMS delay spread.
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Figure 5.24: SER vs Eb/N0 with constant selective fading channel, maximum Doppler shift of 0Hz
and 200ns RMS delay spread.

Figure 5.25: SER vs Eb/N0 with constant selective fading channel, maximum Doppler shift of 0Hz
and 400ns RMS delay spread.
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Absolute Value Versus Real Part

The Figure 5.26, confirms the results obtained in case of flatfading. Taking the real part of the
correlation values provides better performance than the absolute part.

Figure 5.26: SER vs Eb/N0 with constant selective fading channel, maximum Doppler shift of 0Hz
and 400ns RMS delay spread.

Maximum Ratio Combining Versus Zero Forcing

In case of flatfading, the Figure 5.14 demonstrated the advantage of the MRC above the ZF equalization
scheme. The gain is even more convincing here, as the MRC benefits from the channel frequency
diversity, as expected from the algorithm.
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Figure 5.27: SER vs Eb/N0 with constant selective fading channel, maximum Doppler shift of 0Hz
and 400ns RMS delay spread.

5.7.3 Fading Channel Conclusion

In case the flatfading channel, there is no channel diversity in frequency and the conventional schemes
cannot benefit from it. In this case, it is useful to consider the receiver schemes without equalization.
Nevertheless, frequency selectivity is a common channel condition, especially when using CP-OFDM
as the presence of the CP removes the ISI in frequency. In this case, all the schemes using equaliza-
tion mechanisms benefit from the channel diversity, in particular thanks to the MRC equalizer. LS
and LRA-LMMSE Uniform channel estimators provides great performances for low and reasonable
complexity.
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6 Relative Shift Demodulation

We have studied the effect of the fading channel on the CCSK-CP-OFDM communications scheme.
We have more specifically treated the case of state of the art channel estimation, interpolation and
equalization techniques. The following sections study a new channel equalization and demodulation
scheme, which uses the cross-correlation between all the received CCSK sequences as a basis to de-
modulate the information contained in the frame.

6.1 CIR Estimation

In the following, the equations do not consider the oversampling as the processing is done after the
downsampling. The system works at symbol rate with perfect synchronization.

We consider a CIR [h[0], h[1], . . . , h[L − 1]] of independent taps, whose magnitude are Rayleigh
distributed, and with L lower or equal to the CP length. We pad the CIR with zeros up to a length
N: [h[0], h[1], . . . , h[N− 1]].

The received sequence of time symbols, after the channel convolution and AWGN, and after re-
moving the CP, is equal to:

Y [n] =
N−1∑
l=0

h[l]F−1(xu,p)[n− l] + w[n] for n ∈ [0; N− 1] (6.1)

where F−1(xu,p) is the IDFT of the ZC sequence xu right-shifted by p, modulating the information
in the CCSK scheme. As F−1(xu,p) is an N-periodic sequence, we extend the sequence indices as if
they were modulo N, omitting the modulo operator.

As stated in section 3.4, the IDFT of xu,p has a perfect auto-correlation function, so that when
normalized:

R[s] = 1√
N

N−1∑
k=0

F−1(xu,p)[k]F−1(xu)∗[k − s] (6.2)

R[s] =
{

0, if u−1s 6≡ N− p mod (N),√
Nxu[p], if u−1s ≡ N− p mod (N). (6.3)

The value of s verifying the correlation condition is unique in [0; N] for a value of p. Computing
the auto-correlation of the received sequence, we have:

R[s] = 1√
N

N−1∑
n=0

Y [n]F−1(xu)∗[n− s]

R[s] = 1√
N

N−1∑
l=0

h[l]
N−1∑
n=0

F−1(xu,p)[n− l]F−1(xu)∗[n− s] + 1√
N

N−1∑
n=0

w[n]F−1(xu)∗[n− s] (6.4)

The noise term is equivalent to a complex Gaussian term of the same distribution CN (0, σ2). We
use the simplified notation weq[s]. In the correlation term, we recognize the usual auto-correlation
expression:

1√
N

N−1∑
n=0

F−1(xu,p)[n− l]F−1(xu)∗[n− s] (6.5)

where F−1(xu,p)[n− l] is the sequence F−1(xu,p)[n] right-shifted by l positions. There is a unique
value of s, noted s0, that implies a maximum of correlation for l = 0, and null correlation values with
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all the shifted versions l 6= 0:

R[s0] = 1√
N
h[0]

N−1∑
n=0

F−1(xu,p)[n]F−1(xu)∗[n− s0] + weq[s0]

R[s0] = h[0]
√

Nxu[p] + weq[s0] (6.6)

At index s0 + l, the correlation happens with the lth term of the first sum:

R[s0 + l] = h[l]
√

Nxu[p] + weq[s0 + l] (6.7)

Since the convolution between the channel and the signal is circular, the CIR and the correlation
sequence R can be seen as N-periodic sequences. Without noise, the resulting correlation sequence R
corresponds to a shifted version of the CIR [h[0], h[1], . . . , h[N− 1]] scaled by

√
Nxu[p]. This sequence

is right-shifted by s0, so that:
R[s] =

√
Nxu[p]h[s− s0] + weq[s] (6.8)

Consequently, the result of the auto-correlation is an estimation of the CIR, scaled by
√

N, with a
phase offset of xu[p] and shifted by s0. The noise term decreases the accuracy of the estimation and
is equal to:

weq[s] = 1√
N

N−1∑
n=0

w[n]F−1(xu)∗[n− s] (6.9)

6.2 Channel Estimation in Frequency

We compute the normalized DFT of the estimated CIR to obtain an estimation of the channel in
frequency. Similar to the true CIR, the DFT provides an estimate of the channel on each sub-carrier.
The estimate of the channel on sub-carrier k is:

H̃[k] = 1√
N

N−1∑
s=0

R[s] exp
(
−j2πksN

)

H̃[k] = xu[p]
N−1∑
s=0

h[s− s0] exp
(
−j2πksN

)
+ 1√

N

N−1∑
s=0

weq[s] exp
(
−j2πksN

)
(6.10)

Again, the noise term is equivalent to a complex Gaussian term of the same distribution CN (0, σ2),
and we use the notation Weq[k]. With a change of variable s′ = s− s0, we have:

H̃[k] = xu[p] exp
(
−j2πks0

N

)N−1−s0∑
s′=−s0

h[s′] exp
(
−j2πks

′

N

)
+Weq[k] (6.11)

Extending the sequence h as N-periodic, and remembering that the DFT of the true CIR is equal
to H[k] = ∑N−1

s=0 h[s] exp
(
−j2π ksN

)
, we finally obtain:

H̃[k] = xu[p] exp
(
−j2πks0

N

)
H[k] +Weq[k] (6.12)

By definition of s0, we have u−1s0 ≡ N− p mod (N). Thus, s0 ≡ −up mod (N). Using Eq.1.11, we
have:

H̃[k] = xu[p] exp
(
j2πukpN

)
H[k] +Weq[k]

H̃[k] = x∗u[k]xu[k − p]H[k] +Weq[k] (6.13)

The equation Eq.6.13 represents the channel estimation in frequency for the kth sub-carrier. Now,
if we look at the received symbol, on the kth sub-carrier, after the OFDM DFT operation, we have:
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c̃p[k] = xu[k − p]H[k] + 1√
N

N−1∑
n=0

w[n] exp
(
−j2πknN

)
(6.14)

In Eq.6.13, the noise term Weq[k] is expressed as:

Weq[k] = 1√
N

N−1∑
s=0

1√
N

N−1∑
n=0

w[n]F−1(xu)∗[n− s] exp
(
−j2πksN

)

= 1
N

N−1∑
n=0

w[n]
N−1∑
s=0

F(x∗u)[n− s] exp
(
−j2πksN

)

= 1
N

N−1∑
n=0

w[n] exp
(
−j2πknN

) n−N+1∑
s′=n

F(x∗u)[s′] exp
(
j2πks

′

N

)
with s′ = n− s

= 1√
N

N−1∑
n=0

w[n] exp
(
−j2πknN

)
F−1(F(x∗u))[k]

= x∗u[k] 1√
N

N−1∑
n=0

w[n] exp
(
−j2πknN

)
(6.15)

Consequently, we have the equality:

H̃[k] = x∗u[k]c̃p[k] (6.16)

Hence, instead of computing the DFT of the estimated CIR, the same channel estimate in frequency
can be obtained by taking the DFT of the received signal and multiply it by x∗u[k] on the kth sub-carrier.
This method decreases greatly the complexity to obtain the channel estimates.

6.3 MRC Equalization with the Channel Estimate

The OFDM frame is composed of Q OFDM symbols, each containing a single CCSK sequence. Con-
sidering the OFDM symbol of index 0 ≤ m ≤ Q− 1, the corresponding CCSK sequence shift is noted
pm, the channel in frequency Hm, the channel estimated H̃m and the noise sequence in frequency Wm.

6.3.1 Equalization of the Same OFDM Symbol

The MRC equalization of the received OFDM symbol of index m with the corresponding channel
estimate on the kth sub-carrier is equal to:

θm/m[k] = αmc̃pm [k]H̃m
∗[k]

= αmc̃pm [k]xu[k]c̃pm∗[k]
= αmxu[k]|c̃pm [k]|2

= αmxu[k](|Hm[k]|2 + |Wm[k]|2 + 2<(xu[k − pm]Hm[k]W ∗m[k])) (6.17)

with αm = 1∑N−1
n=0 |c̃pm [n]|2

the normalization factor of the MRC. From the last expression, computing
the cross-correlation of the θm/m with the root sequence xu should lead to a maximum at index 0,
independently of the index m. Hence, this equalization removes the shift value pm, and with it the
modulated information.
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6.4 Equalization of Adjacent OFDM Symbols

We now consider the OFDM symbol at index as 0 ≤ l ≤ Q − 1, and the channel estimate at index
0 ≤ m ≤ Q− 1, with l 6= m. The MRC equalization becomes:

θl/m[k] = αmc̃pl [k]H̃m
∗[k]

= αm(xu[k − pl]Hl[k] +Wl[k])(xu[k]x∗u[k − pm]H∗m[k] + xu[k]W ∗m[k])
= αm(xu[k − pl]xu[k]x∗u[k − pm]H∗m[k]Hl[k]) + αm(xu[k − pl]xu[k]Hl[k]W ∗m[k]+
xu[k]x∗u[k − pm]H∗m[k]Wl[k] + xu[k]W ∗m[k]Wl[k]) (6.18)

The second term of the sum is associated to a noise term and noted Wl/m. Focusing on the first
term, we have:

θl/m[k] = αm(xu[k − pl]xu[k]x∗u[k − pm]H∗m[k]Hl[k]) +Wl/m[k]

= αmxu[k]xu[pl] exp
(
j2πukplN

)
xu[k]x∗u[k]x∗u[pm] exp

(
−j2πukpmN

)
H∗m[k]Hl[k] +Wl/m[k]

= αmxu[k]xu[pl]x∗u[pm] exp
(
j2πuk(pl − pm)

N

)
H∗m[k]Hl[k] +Wl/m[k]

= αmxu[k − (pl − pm)]x∗u[pl − pm]xu[pl]x∗u[pm]H∗m[k]Hl[k] +Wl/m[k]

= αmxu[k − (pl − pm)]x∗u[pl]x∗u[pm]xu[pl]x∗u[pm] exp
(
−j2πuplpmN

)
H∗m[k]Hl[k] +Wl/m[k]

= αmxu[k − (pl − pm)] exp
(
j2πup

2
m − plpm

N

)
Hl[k]H∗m[k] +Wl/m[k] (6.19)

The main term corresponds to a ZC sequence right-shifted by pl−pm, scaled by a frequency constant
complex exponential. Hence, taking the absolute value of the correlation for the CCSK demodulation
should lead to a maximum value at index pl− pm modulo N. We have obtained a relative information
for the shift of the CCSK sequence in OFDM symbol l against the shift in OFDM symbol m. This
relative information can be used to demodulate the OFDM frame, as presented in the next section.

6.5 DFTLink and GLAD Algorithms

6.5.1 DFT-Link: Relative Shift Probabilities Matrix

The values of θl/m in Eq.6.19 are computed for all couple (l,m). To evaluate the position of pl − pm
based on θl/m, we compute the cross-correlation of θl/m with the root sequence xu:

Rl/m[k] = 1√
N

N−1∑
n=0

θl/m[n]x∗u[n− k]

Rl/m[k] = αm
1√
N

exp
(
j2πup

2
m − plpm

N

)N−1∑
n=0

xu[n− (pl − pm)]x∗u[n− k]Hl[n]H∗m[n]+

1√
N

N−1∑
n=0

Wl/m[n]x∗u[n− k] (6.20)

Hence, Rl/m corresponds to our usual correlation result after the MRC equalization, with the
particularity of a constant phase shift exp

(
j2πup

2
m−plpm

N

)
along the sub-carrier. Because of this phase

shift, the absolute value of the correlation has to be taken instead of the real part. The maximum of
correlation should be at index k ≡ pl − pm mod (N), providing an estimation of pl − pm mod (N). We
normalize the cross-correlation scores as a probability distribution:

Pl/m[k] =
|Rl/m[k]|∑N−1
n=0 |Rl/m[n]|

(6.21)
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Thus, each Pl/m is a sequence summing to one, where the maximum of “probability” corresponds
to the relative shift pl−pm mod (N). These probabilities are regrouped in a single matrix. To illustrate
the result, we consider an OFDM frame of length 3, so that Q = 2. The matrix has the following
form: P0/0 P1/0 P2/0

P0/1 P1/1 P2/1
P0/2 P1/2 P2/2

 (6.22)

The row i corresponds to the equalizations by the channel estimated in OFDM symbol i. The
vectors on the diagonal should all have a maximum value at index 0. In the following, we first prove
that this matrix has a symmetry and we then propose an algorithm using this matrix to demodulate
the CCSK frame.

We describe the process to get this matrix as the DFTLink algorithm.

6.5.2 Symmetric Property

From Eq.6.20 and Eq.6.19, we have:

Rl/m[k] = αm
1√
N

N−1∑
n=0

x∗u[n− k]xu[n](xu[n− pl]Hl[n] +Wl[n])(x∗u[n− pm]H∗m[n] +W ∗m[n])

= αm
1√
N

N−1∑
n=0

x∗u[n− k]xu[n]c̃pl [n]c̃pm∗[n]

= αm
1√
N

N−1∑
n=0

x∗u[n]x∗u[k]xu[n]c̃pl [n]c̃pm∗[n] exp
(
−j2πnukN

)
= αmx

∗
u[k]F(c̃pl c̃pm

∗)[uk] (6.23)

and

Rm/l[k] = αl
1√
N

N−1∑
n=0

x∗u[n− k]xu[n](x∗u[n− pl]H∗l [n] +W ∗l [n])(xu[n− pm]Hm[n] +Wm[n])

= αl
1√
N

N−1∑
n=0

x∗u[n− k]xu[n]c̃pl
∗[n]c̃pm [n]

= αl
1√
N

N−1∑
n=0

x∗u[n]x∗u[k]xu[n]c̃pl
∗[n]c̃pm [n] exp

(
−j2πnukN

)
= αlx

∗
u[k]F((c̃pl c̃pm

∗)∗)[uk]
= αlx

∗
u[k]F(c̃pl c̃pm

∗)∗[−uk mod N] (6.24)

Consequently, we obtain the equality:
|Rl/m[k]|
αm

=
|Rm/l[−k mod (N)]|

αl
=
|Rm/l[N− k]|

αl
(6.25)

Finally, with the normalization as a probability distribution of the correlation values, we have:

Pl/m[k] =
|Rl/m[k]|∑N−1
n=0 |Rl/m[n]|

=
|Rm/l[N− k]|∑N−1
n=0 |Rm/l[N− n]|

=
|Rm/l[N− k]|∑N−1
n=0 |Rm/l[n]|

= Pm/l[N− k] (6.26)
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The equality Pl/m[k] = Pm/l[N − k] means that symmetric probability vectors share the same
values but in a reverse order, always starting at index zero.

6.5.3 Iterative Demodulation

In previous sections of this document, we have described how the DFTLink algorithm calculates
the relative shift matrix from the received OFDM frame. In this section, we introduce the GLAD
algorithm, which aims to iteratively process the relative shift matrix, in order to aggregate all available
information and improve the demodulation process. The algorithm uses an iterative probabilistic
graphical model to combine the distributions contained in the relative shift matrix described above.
The approach aims to propagate the available information hierarchically to neighbouring variables in
the graph using the relative shift relationships linking them.

Description of the Algorithm

The proposed algorithm mostly rely on two steps:

• First, partial versions of all the relative shifts are computed based on all the available relative
shift pairs using the following formula:

P
(c)
a/b = Pa/c ~ Pb/c

where ~ denotes the cross-correlation operation. Table 6.1 describes one way to obtain the 27
partial relative shifts in the example of a frame with 3 OFDM symbols.

• Then, the different partial versions of a given relative shift are recombined using a product:

Pa/b =
N−1∏
c=0

P
(c)
a/b

Table 6.2 describes how the 27 partial relative shifts are recombined to obtain the updated,
a posteriori, relative shifts. The proposed method being iterative we don’t want to influence
the updated posterior value of one relative shift by its own value, also referred as intrinsic
information. Masking procedure is thus put in place to avoid such self-influencing loops in the
iterative graph as described by the coloured cells of Table 6.2. Red cells are partial relative
shifts that contains the intrinsic information - e.g the updated value of P0/1 should not rely
on the partial relative shift P (1)

0/1 = P0/1 ~ P1/1 which contains the intrinsic value P0/1. Orange
cells are partial relative shifts that contain the symmetric relative shift - e.g the updated value
of P0/1 should not rely on the partial relative shift P (0)

0/1 = P0/0 ~ P1/0 which contains the
symmetric value P1/0. Indeed, the matrix provided by the DFTLink algorithm being symmetric,
Pi/j [k] = Pj/i[N − k], as demonstrated in Section 6.5.2 - the symmetric value can be seen has
the intrinsic value w.r.t. the posterior updates, and thus should not be taken into account.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

IN
OUT

P
(0)
0/0 P

(0)
1/0 P

(0)
2/0 P

(1)
0/0 P

(1)
1/0 P

(1)
2/0 P

(2)
0/0 P

(2)
1/0 P

(2)
2/0 P

(0)
0/1 P

(0)
1/1 P

(0)
2/1 P

(1)
0/1 P

(1)
1/1 P

(1)
2/1 P

(2)
0/1 P

(2)
1/1 P

(2)
2/1 P

(0)
0/2 P

(0)
1/2 P

(0)
2/2 P

(1)
0/2 P

(1)
1/2 P

(1)
2/2 P

(2)
0/2 P

(2)
1/2 P

(2)
2/2

0 P0/0 x,y y y x x
1 P1/0 x 0 0 y x,y y 0 0 x 0 0
2 P2/0 x x y y x,y
3 P0/1 x,y y y x x
4 P1/1 0 x 0 0 y x,y y 0 0 x 0
5 P2/1 x x y y x,y
6 P0/2 x,y y y x x
7 P1/2 0 0 x 0 0 y x,y y 0 0 x
8 P2/2 x x y y x,y

Table 6.1: Partial relative shifts computations using equation: P (c)
a/b = Pa/c ~ Pb/c = x ~ y
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0 1 2 3 4 5 6 7 8

IN
OUT

P0/0 P1/0 P2/0 P0/1 P1/1 P2/1 P0/2 P1/2 P2/2

0 P
(0)
0/0 x0

1 P
(0)
1/0 x0

2 P
(0)
2/0 x0

3 P
(1)
0/0 x1

4 P
(1)
1/0 x1 0 0

5 P
(1)
2/0 x1

6 P
(2)
0/0 x2

7 P
(2)
1/0 x2

8 P
(2)
2/0 x2

9 P
(0)
0/1 x0

10 P
(0)
1/1 x0

11 P
(0)
2/1 x0

12 P
(1)
0/1 x1

13 P
(1)
1/1 0 x1 0

14 P
(1)
2/1 x1

15 P
(2)
0/1 x2

16 P
(2)
1/1 x2

17 P
(2)
2/1 x2

18 P
(0)
0/1 x0

19 P
(0)
1/1 x0

20 P
(0)
2/1 x0

21 P
(1)
0/1 x1

22 P
(1)
1/1 0 0 x1

23 P
(1)
2/1 x1

24 P
(2)
0/1 x2

25 P
(2)
1/1 x2

26 P
(2)
2/1 x2

Table 6.2: Following the partial relative shift computation described in 6.1, this table describes
the recombination process of the partial information using equation: Pa/b = ∏N−1

c=0 P
(c)
a/b =∏N−1

c=0 Pa/c ~ Pb/c = ∏N−1
c=0 xc. Intrinsic, symetric and extrinsic information are represented in red,

orange and green, respectively. One should note that, in this simplified exemple, only one or two
partial shifts remain in each product reduction although more elements participate in these product
reductions when considering larger OFDM frames.
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P1/0.

P
(0)
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P
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P1/0

P2/0

∗
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.

P
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P
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P
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P2/0
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P0/1

P2/1
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P0/2

P2/2
Iteration N − 1 Iteration N

Figure 6.1: Exemple of GLAD computational graph for the P1/0 relative shift. P̄i/j denote the a priori
information that is combined with the extrinsic information to update the a posteriori distribution at
each iteration.

These two algorithmic steps are sequentially and iteratively executed as explicitly described in the
example of Figure 6.1, describing the computational graph related to one of the relative shift variable.
This figure adopts the same colour code to show the information that should or should not be kept at
each iteration, in order not to directly propagate the intrinsic information to the next iteration.

Implementation as a Reccurent Cell

In practice, these operations are embedded into a recurrent cell to be executed iteratively as shown
in Figure 6.2. At each iteration the a priori flattened relative shift matrix is provided and combined
with the extrinsic information from previous iteration, also referred to as the cell states. The result
is eventually combined with the communication system priors - e.g. if pilots symbols are in use, then
some of the relative shifts in the matrix are known in advance and thus, certain distributions of the
matrix should be multiplied by a Kronecker distribution (a probability of 1 for the pilot value, 0
elsewhere). Then, the Operator A extracts the adequate relative shift pairs to compute all the partial
relative shifts. Next, Operator B extracts the different partial shifts for recombination. Then two
computational paths are defined:

• If these results are to be used for next iteration, the extracted partial relative shifts are masked
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Updated Relative Shift Matrix
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Figure 6.2: Complete computational graph of the proposed iterative demodulation algorithm.

to keep only the extrinsic information, combined using a product and provided to next iteration
as the new cell states.

• If these results are to be used as the output of the cell, then the product reduction is directly
applied without masking, to keep both, intrinsic and extrinsic information. The obtained result
is again multiplied by the communication priors and the then updated relative shift matrix is
reshaped in its initial format.

Communication Priors and Pilots Sequences

As shown in Figure 6.2, communication priors1 can be used in the proposed demodulation algorithm
to help the demodulation algorithm in its task. One such example of a communication prior is the
use of pilots symbols which provides certainty about the value of certain symbols (and thus relative
shifts) upon reception.

We provide here an example of a prior matrix in the case of a 5 OFDM symbols frame where, the
symbols 0, 2 and 4 are pilots symbols with a value of the CCSK symbol of 0:

δ(0) 1 δ(0) 1 δ(0)
1 δ(0) 1 1 1
δ(0) 1 δ(0) 1 δ(0)
1 1 1 δ(0) 1
δ(0) 1 δ(0) 1 δ(0)


The diagonal of the matrix is always known as the relative shift of a symbol to itself and is always

a shift of 0. For the pilots symbols which are defined with a value of 0, their relative shifts is also
necessarily equal to zero, thus leading to a grid of Kronecker distributions. All the other indices of
the relative shift matrix have a uniform prior, meaning that no prior knowledge is known about these
relative shifts.

Uniform and Kronecker priors can be seen as the two extreme cases of absolute certainty or
uncertainty. Obviously, one can imagine a communication system with other characteristics, and thus

1These communication priors should not be confused with the a priori relative shift matrix. The latter is the a
priori knowledge we have by looking at the received relative shift matrix (which varies from frame to frame), while the
communication priors are the a priori knowledge we can have about any communication in this system, even before
observing a received frame.
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Figure 6.3: (Left) Standard product reduction with normalization - (Right) Partial tree product
reduction with intermediate normalizations.

communication priors, to improve the robustness of the transmission, change its rate, or protect more
certain parts of the frame than others, e.g. by using only a subset of the available values for certain
symbols (and the corresponding communication priors upon reception).

Normalization, Product and Numerical Stability

Normalization steps have not been explicitly detailed in the previous description. We assume that
the distributions in the relative shift matrix are probability distributions and should thus sum to
one. Hence, every product or cross-correlations operations between these distribution occurring in the
previously detailed graph is followed by a re-normalization step that ensures that the newly computed
distribution sums to one.

One should note that numerical stability issues can occur during the product reduction step when
it involves a large number of distribution, i.e. when consider a frame with a large number of OFDM
symbols. Indeed, the reduction of multiple distributions whose value lies, by definitions between 0
and 1, can rapidly lead to small numbers and arithmetic underflow of the numerical representations
used (typically float32 numbers in the present case). To avoid these numerical issues we propose
to use a slightly different product reduction, using a binary tree reduction. The product reduction
is applied on pairs of distributions, the results are then normalised, before being again reduced in
pairs and normalised, and so on and so forth until having obtained a single distribution (as shown in
Figure˜6.3).

Shifted Demodulation

We consider a CCSK OFDM frame composed of the shifts [p0, ..., pQ−1] with Q the number of CCSK
symbols in the frame, and 0 ≤ pi ≤ N − 1 ∀i. The binary frame is integrity protected by a Cyclic
Redundancy Check (CRC) or any other mechanism that allows the receiver to confirm that the de-
modulated bits are correct. Thus, a correct demodulation of the frame should provide the same shifts
values as the one transmitted.

Nevertheless, if we consider a constant shift integer in the demodulated CCSK shifts, as [p0 +
c mod (N), ..., pQ−1 +c mod (N)] for c ∈ N, the receiver can try each possible value of c and then check
the integrity of the binary message. If the data integrity is confirmed for a value of c, the system can
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consider this version as the right one. Consequently, in the following, we assume that a demodulated
frame shifted by a constant value is correct.

Demodulation from the Relative Shift Matrix

The updated relative shift matrix does not provide the absolute shift of the CCSK sequences. To obtain
the absolute shifts and process the final demodulation into binary words, there are two possibilities:

• The system has reference sequences, i.e pilot sequence, with know shift value at the receiver.
Based on the known shift value, the receiver can deduct the absolute shift values of the rest of
the frame, by taking the matrix line corresponding to the equalization with a reference sequence.
If there are several reference sequences with the same shift value, then the different lines can be
averaged, to obtain an estimate of the absolute shifts.

• As explained in the previous section 6.5.3, the shifted demodulation can be used to demodulate
frame affected by a constant shift offset. Hence, a random sequence can be used as reference,
its shift assumed equal to zero, and the corresponding line taken in the relative shift matrix.
The obtained shifts are all moved by a constant value equal to the absolute shift of the sequence
used as reference. Again this offset is unknown, but the frame can still be demodulated using
the principles described in section 6.5.3.

6.6 Results

In this section, we evaluate the performance of the proposed model w.r.t. several parameters and com-
pare it to standard algorithms. Otherwise explicitly stated, we use similar system design assumptions
as the ones used throughout Section 5:

• The transmitter and receiver are based on CP-OFDM and CCSK scheme A.

• The dimension of the OFDM symbol is equal to the size of the ZC sequence, and noted N = 64.
Consequently, each OFDM symbol carries a single ZC sequence, corresponding to a single CCSK
symbol, representing binary word of 6 bits.

• The OFDM frame is composed of 20 successive OFDM symbols. The CP length is fixed to 10
symbols.

• The first OFDM symbol is used as a block pilot symbol. Hence the channel is estimated on each
sub-carrier in the first OFDM symbol, and then interpolated with the linear interpolator in time
over the data symbols. We use the root ZC sequence for the pilot symbol.

• We use the MRC scheme as an equalizer to improve the cross-correlation operation and the
performance of the systems.

• Between successive OFDM symbols, the channel on the same sub-carrier is constant, i.e. the
maximum Doppler shift is fixed to 0Hz.

• The system assumes a perfect synchronization in time and frequency at symbol rate, in base-
band.

• The channel coefficients are not constant in frequency and vary along the sub-carriers. Hence,
in time, the channel does not appear as a single path, but as a multi-path channel introducing
ISI in time. A RMS delay spread of 400ns is considered.

In the present study, we recall that DFTLink algorithm computes the relative shift matrix which
is provided to GLAD algorithm for demodulation.
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6.6.1 Comparison with Standard Solutions

The performance of the proposed model is compared with that of standard approaches based on
LS, LMMSE (with and without approximations) estimates or perfect channel knowledge, and MRC
equalization. Under the general system design assumptions described above, the performance of
the proposed algorithm lies between that of LS-MRC approaches and practical implementations of
LMMSE-MRC based on approximations.

Figure 6.4: Comparison of the performance of the GLAD algorithm with that of different standard
approaches.

These results are promising and show that the proposed combination of the DFTLink and GLAD
algorithms offers performance close to that of practical implementations of the LMMSE approach.
However, the algorithmic complexity of the proposed approach is higher than that of the other models
in this comparison. Yet, this extra cost in terms of complexity makes it possible, among other things,
to support pilot-less approaches (see section 6.5.3 on shifted demodulation) and could, moreover, be
reduced in the future with novel algorithms based on the DFTLink relative shift matrix.

6.6.2 Benefits of the Iterative Approach

In this section, we study the impact of the iterative approach, in order to verify that running several
iterations of the proposed algorithm does indeed bring a performance gain. We measure the evolution
of the SER of the system after a certain number of iterations for a fixed signal-to-noise ratio (Eb/N0 =
18dB). As shown in Figure 6.5, the iterative approach effectively improves performance with an
observed reduction in the error rate of more than a factor of 3 after 4 iterations (compared with a
single iteration). The figure also presents an error floor which shows that it is not necessarily worth
applying more than 4 iterations, as the performance gain per additional iteration decreases rapidly.

6.6.3 Channel Diversity

This section address the question of channel diversity, both in time and frequency, and study the
impact of the number of pilot and their positions in the frame.
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Figure 6.5: Evolution of GLAD algorithm performance as a function of the number of demodulation
iterations. While the number of iterations does have an impact on the final performance, it appears
to be limited to the first 4 iterations.

Time Diversity - Effects of Doppler Shift and Pilot Positioning

Doppler effect introduces channel evolution in time that can induce severe performance degradation,
in particular when the channel varies significantly over the duration of an OFDM frame. We study
here the impact of the Doppler with maximum frequencies ranging from 0 Hz (i.e. no Doppler) to 10
kHz. The position and number of pilots in the frame is particularly important to accurately estimate
and thus counterbalance the evolution of the channel over the duration of the frame. Three pilot
configurations are compared:

A: A single pilot, at the beginning of the frame (index 0).

B: Two pilots, at both beginning and end of the frame (indices 0 and 19).

C: Three pilots, at the beginning, middle and end of the frame (indices 0,10,19).

Figure 6.6 describe the performance of the different models at a fixed signal-to-noise ratio (Eb/N0 =
14dB) for different Doppler frequency. For each model, the three pilot configurations described before
are tested and represented using three colors. Several conclusions can be drawn from these results:

• Under no Doppler, it is clear that whereas an increased number of pilot symbols allows for a
better channel estimate (and thus better performance) in the case of LS or LMMSE models, it
leads, on the contrary, to a reduced efficiency for the GLAD (which use anyway the complete
frame for channel estimation) and PerfectCSI models. The more pilots symbols, the less data
payload for a same amount of energy used for transmission.

• When the maximum doppler frequency is non zero, whatever the scheme, configurations with
more pilots are more robust and thus maintain acceptable performance over a wider doppler
range.

• At higher Doppler frequencies (> 103Hz), GLAD outperforms the other systems, but error rates
remain very high in all cases (> 20%). Whereas the performance of LS and LMMSE all converge
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Figure 6.6: Evolution of the performance of GLAD algorithm compared to that of standard methods
as a function of the maximum Doppler frequency. Different pilot configurations are tested: (red) A:
A single pilot, at the beginning of the frame (index 0) - (blue) B: Two pilots, at both beginning and
end of the frame (indices 0 and 19) - (green) C: Three pilots, at the beginning, middle and end of the
frame (indices 0,10,19).

towards 70% SER, whatever the number of pilots used, GLAD’s performance level increases with
the number of pilots (the algorithm is better able to take advantage of the pilots). It should
be remembered that, although GLAD estimates the channel using all available symbols, known
pilot symbols, considered as communication priors described by Kronecker distribution in the
relative shifts matrix, still can help improving the estimation of all relative shifts.

In order to better mitigate the effect of channel evolution, we propose an additional treatment in
the GLAD algorithm, which consists in filtering out information in the relative shift matrix that is
considered unreliable. Indeed, the estimation of the relative shifts between too much spaced symbols
in the OFDM frame is likely to be unreliable, and the algorithm should not use them in the presence
of significant Doppler, but rather use reliable information, i.e. pilot data or the relative shifts between
sufficiently close symbols within the frame. This procedure is implemented by applying a windowing
mask to the relative shift matrix before the GLAD demodulation procedure. The proposed mask is
defined in the form of a unit band matrix, i.e. a matrix that has unit elements arranged uniformly
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near the diagonal, and zero elsewhere, such as:

mask =


1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1


In such example, and assuming an OFDM frame of size 5, by using a window of size 3 we consider
that only strictly adjacent symbols should be considered in the relative shift updates.

Figure 6.7 displays the results obtained with such procedure with windows of sizes 7 and 15 (over
a frame of 20 symbols) and for pilot configurations A, B and C.

In any case, using the windowing procedure in the absence of significant Doppler always degrades
performance, which is completely logical since it means discarding reliable estimates of the channel.
The proposed method does not seems to provide any performance gain with the pilot configuration
A, for any window size. In the case of the pilot configuration B, the window size of 7 seems to be too
restrictive and thus do not bring performance gain either.

When the Doppler is too high, the windowing procedure does not help either. On the other hand,
in the intermediate tilting zone, with a moderate Doppler (around 102 Hz), adequate windowing seems
to be able to improve GLAD performance and extend the frequency range beyond which the Doppler
degrades the system’s performance too much.

Figure 6.7: Evaluation of the windowing approach applied to GLAD algorithm under different pilot
configurations and doppler shift. (solid lines) no windowing - (dashed lines) window of size 7 - (dash-
dotted lines) window of size 15. We recall that the total OFDM frame length is 20.
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Exploiting Channel Frequency Diversity

Another type of channel diversity can occur in the frequency domain, for example in the presence of
multi-path, resulting in a variation in the channel response on different sub-carriers. By modifying
the time delay spread of the channel, we study in this section the impact of frequency diversity on the
different models.

Figure 6.8: Evolution of the performance of the different models under increasing channel delay
spread/frequency diversity.

As shown on Figure 6.8, GLAD algorithm benefits of the increased frequency diversity in a similar
way to that of LMMSE.

6.6.4 Scaling the OFDM Frame Size

In this section, we investigate the impact of OFDM frame length on system performance. Figure 6.9
displays the SER performance of the different models at a fixed signal-to-noise ratio (Eb/N0 = 14dB)
for different size of OFDM frame (the first symbol of the frame being a pilot). In the case of the LS
and LMMSE models, and in the presence of a constant-time channel (no Doppler), the quality of the
channel estimation, based on the single pilot symbol at the beginning of the frame, does not improve
with frame length. Thus, the observed increase in performance of the LMMSE and LS models is
mainly due to the reduction in the relative overhead of the pilot in relation to the frame size (a single
pilot inserted in a small frame has a greater negative impact in terms of energy efficiency than in a
longer frame). As a result, the relative performance per additional OFDM symbol decreases rapidly
before reaching a floor. In contrast, for the GLAD algorithm, the performance gain is also due to the
better channel estimates that accompany a larger frame. In fact, the GLAD algorithm uses all the
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symbols to estimate the channel and therefore benefits from a longer frame, at least for channels that
are constant throughout the frame.

Figure 6.9: Performance of the different models with increasing OFDM frame length. We recall that
the frame always start with a single pilot symbol.

For computational reasons, no frames longer than 50 symbols were tested but an interesting ques-
tion would be that of the asymptotic performance of the GLAD algorithm. Indeed, the latter benefits
from a better channel estimate for each added symbol, whereas pilot based approach like LMMSE or
LS are obviously limited in their performance by the number of pilots present in the frame. Potentially,
under very long frame, DFTLink and GLAD algorithm allow for a perfect channel estimate, and thus
similar performance to that of perfectCSI-MRC model.

Another way to study, the impact of Doppler shift on the proposed system, is to study its perfor-
mance when the length of the frame increases (with a single pilot at its beginning), under a certain
Doppler frequency. Figure 6.10 shows the performance of the different models under maximum Doppler
frequencies of 0,100 and 200 Hz and with frame size ranging from 2 to 50 OFDM symbols.

Once again, we see that GLAD algorithm seems to offer better robustness w.r.t. Doppler shift: its
performance start degrading with larger frame than LS or LMMSE, the degradation is slower as the
frame size increase, and it finally reach better performance than the other models.

6.6.5 Scaling the CCSK Sequence Length

In this section, we briefly address the issue of CCSK sequence length and its impact on model per-
formance. Figure 6.11 shows the SER performance of the different models at a fixed signal-to-noise
ratio (Eb/N0 = 14dB) for different numbers of bits k per CCSK symbol and hence different sizes 2k of
the CCSK sequence. The performance of the GLAD algorithm falls between that of LS and LMMSE,
although the LMMSE algorithm appears to benefit more from increasing the length of the CCSK
sequence.

For computational reasons, this study is unfortunately very limited with a number of bits ranging
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Figure 6.10: Evolution of model performance with increasing frame length in the case of Doppler shift.
The longer the frame, the greater the channel is uncorrelated between the beginning and end of the
frame. Remember that a single pilot symbol is inserted at the start of the frame.

from 4 to 7 due to the exponential growth in the size of the sequence. No detailed analysis can
therefore be carried out in this respect.

6.7 Conclusion on the DFTLink and GLAD Algorithms

The combination of the DFTLink and GLAD algorithms get good performances when compared to
more traditional receiver scheme, but at the cost of a high complexity. Further study need to be
done to improve the efficiency of the GLAD algorithm, simplifying the graph and using the right
approximations. The windowing step is also a promising improvement to increase the robustness
against Doppler.

But despite its high complexity and its overall good performances, the DFTLink and GLAD
algorithms show specifically great promises in case of constant channel (no Doppler). The capacity to
get a channel estimate for each OFDM symbol, and the principle of shifted demodulation enabling the
demodulation of the frame without pilot sequence unlock the path for an improved system capacity,
especially for short packet.
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Figure 6.11: Performance of models with different numbers of bits per CCSK symbol, and therefore
different CCSK sequence lengths.
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7 Time and Frequency Synchronization

In this section, we evaluate the robustness of the CCSK OFDM modulation to imperfect time and
frequency synchronization.

7.1 Impact of Synchronization Error in Time

We assume a perfect frequency synchronization and imperfect time synchronization. We also assume,
that a coarse time synchronization of the frame is available, i.e. the frame rough position has been
detected, and the fine time synchronization is needed. We assume that each OFDM symbol carries a
single CCSK sequence. The receiver has to find the start of the frame as the first sample of the first
CP. The whole frame spans on Q ∗ (N + L) samples at symbol rate, that the receiver should extract
to process the demodulation, with Q the number of OFDM symbols within the frame, N the length
of a ZC sequence and L the CP length.

The received samples at symbol rate for an OFDM symbol starts with a CP of length L: [Y [−L], Y [−L+
1]..., Y [−1], Y [0], Y [1], ..., Y [N − 1]]. We assume a synchronization error of −Z samples at sym-
bol rate, with Z ≤ L, So that the extracted OFDM symbol, after the CP removal is equal to
[Y [−Z], Y [−Z + 1], ..., Y [−Z + N− 1]]. In case of perfect synchronization, Z = 0.

Without noise and fading channel, the received CP samples are equal to the end of the OFDM sym-
bol. Noting X the sequence of transmitted symbols, the received samples [Y [−Z], Y [−Z+1], ..., Y [N−
1 − Z]] are equal to [X[N − Z], ..., X[N − 1], X[0], X[1], ..., X[N − 1 − Z]]. The receiver computes the
DFT of this sequence:

F(X)[k] = 1√
N

N−1∑
n=0

X[n− Z] exp
(
−j2πnkN

)

= 1√
N

N−1−Z∑
n′=−Z

X[n′] exp
(
−j2π (n′ + Z)k

N

)

= exp
(
−j2πZk

N

) 1√
N

N−1−Z∑
n′=−Z

X[n′] exp
(
−j2πn

′k

N

)

= exp
(
−j2πZk

N

)
F(X)[k]

= exp
(
−j2πZk

N

)
cp[k] (7.1)

with cp the ZC sequence transmitted, modulated with a shift value of p: cp[k] = xu[k − p]. The
synchronization error in time results in a linearly increasing phase shift of the ZC sequence along the
sub-carriers. Then, the receiver computes the cross-correlation of the receive sequence with root ZC
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sequence to find the maximum of correlation:

R[i] = 1√
N

N−1∑
k=0

cp[k]c∗0[k − i] exp
(
−j2πZk

N

)

= 1√
N

N−1∑
k=0

xu[k − p]x∗u[k − i] exp
(
−j2πuu−1 Zk

N

)

= 1√
N

N−1∑
k=0

xu[k]xu[p] exp
(
j2πukpN

)
x∗u[k]x∗u[i] exp

(
−j2πukiN

)
exp

(
−j2πuu

−1Zk
N

)

= 1√
N
xu[p]x∗u[i]

N−1∑
k=0

exp
(
j2πuk(p− i− u−1Z)

N

)
(7.2)

The sum is not equal to zero if and only if p − i − u−1Z ≡ 0 mod (N). For instance, when
i = p− u−1Z mod (N). This value is unique on [0,N− 1]. Consequently, we have:

R[i] =
{ √

Nxu[p]x∗u[i], when p− i− u−1Z ≡ 0 mod (N)
0, otherwise (7.3)

The last equation means that, to obtain the correlation peak, the absolute value has to be taken,
and that the peak is moved by a value of u−1Z from p. The peak is still unique. Moreover, it should
be noted that in our system, the values of u−1 and Z are constants, at least for the duration of a
frame. Hence, our mis-synchronized system is in a typical case of shifted demodulation (see section
6.5.3). After the CCSK demodulation, all the shifts values of the frame should have the same offset
of −u−1Z mod (N). Considering a shifted demodulation, the resulting frame is correct. This behavior
is summarized in Figure 7.1.

Figure 7.1: Impact of a negative timing error on the final demodulated CCSK shift.

We introduce a new metric named Shifted Block Error Rate (SBLER) to measure the performance
of the system in the conditions of a shifted demodulation. The SBLER counts a block error, i.e. an er-
roneous frame, if the difference between the true shift and the demodulated shift is not constant across
the frame. In our case, this different should be constant and egal to −u−1Z mod (N). In Figure 7.2,
the SBLER is evaluated for a timing error of respectively minus 4 and minus 8 samples, corresponding
to minus 1 and minus 2 symbols, our system using an oversampling factor of 4. The performance con-
firms that the SBLER is not impacted by the negative timing error, when the synchronized window
includes the CP.

Of course, in case of multipath fading, the CP is also affected by interference from the previous
OFDM symbol. These interference mitigate the correlation scores and the performances. Yet, the
principles outlined above remain valid and a shifted demodulation can be processed. One could
increase the CP length to take both effect into account: multipath fading and synchronization errors.

If the synchronization error is now positive, so that it includes the CP of the following OFDM
symbol, the equations stay the same, replacing the −Z by a +Z. Because of the interference of the
next CP, the performance will decrease compare to the better case of a negative synchronization error.
The Figure 7.3 highlights the impact on the SBLER performances when the timing error is positive.
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Figure 7.2: SBLER vs Eb/N0 for negative timing error at symbol rate.

7.2 Impact of Synchronization Error in Frequency

We assume that the system is perfectly synchronized in time, but not in frequency, so that a frequency
offset remains in baseband. A coarse frequency synchronization is available and the remaining offset
range from a fraction of sub-carrier spacing to a few sub-carrier spacing. Again we assume that each
OFDM symbol carries a single CCSK sequence. Moreover, we suppose that the frequency offset stays
constant throughout the frame.

Considering an OFDM system, it is common to decompose the frequency offset as an interger part
and a fractional part of the sub-carrier spacing:

f0 = (fi + fr)∆f (7.4)

with f0 the frequency offset in baseband, fi ∈ Z the integer part, fr ∈ [−0.5, 0.5] the fractional
part and ∆f the sub-carrier spacing.

If fr is not equal to zero, the orthogonality of the OFDM modulation is broken, and all subcarriers
interfere with each other.

If fi is not equal to zero all the subcarriers will be shifted by fi positions, and under the right
conditions of filtering, aliasing in frequency will occur. This phenomena of aliasing is represented in
Figure 7.4, where a frequency offset of f0 = ∆f is represented. If the low-pass filter is not too sharp,
all the shifted sub-carriers are included in the spectrum and the downsampling creates an aliasing,
moving the last sub-carrier at the first position. As represented in Figure 7.4, this exactly corresponds
to a shifting of the CCSK sequences by one position. Hence, an integer frequency offset creates an
additional shift in the CCSK sequences, assuming compatible filtering conditions. Moreover, if the
frequency offset is constant throughout the frame, all the CCSK symbols are shifted by the same value
fi, allowing a shifted demodulation to occur. The SBLER performance for plus or minus one sub-
carrier frequency shift is provided in Figure 7.5, showing no difference with the perfect synchronization
case.
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Figure 7.3: SBLER vs Eb/N0 for positive timing error at symbol rate.

Figure 7.4: Impact of an integer frequency error on the final demodulated CCSK shift.

7.3 Including Iterative Mapping

The iterative mapping, i.e. transmitting several CCSK sequences within each OFDM symbol (see
section 4.4.1), also benefits from the shifted demodulation in case of time synchronization error and
integer frequency offset.

In case of time offset, the linearly increasing phase shift exp
(
−j2π Zk

N

)
is the same in frequency.

Looking at a specific sequence at the position m within the OFDM symbol, the observed phase
shift for this sequence increases at a rate q, equal to the number of CCSK sequences multiplexed:
exp

(
−j2π Z(qk+m)

N

)
. The rest of the computation in Eq.7.2 is the same, with a maximum of correlation

reached when p− i− u−1qZ ≡ 0 mod (N) equal to
√

Nxu[p]x∗u[i] exp
(
−j2π Zm

N

)
.

In case of integer frequency offset, the impact is more complex. To illustrate the phenomenon,
consider two OFDM symbols carrying each three CCSK sequences with an iterative mapping, as
illustrated in Figure 7.6. We identify three groups of sub-carriers, depending on their index in the
OFDM symbols. The Figure 7.7 describes the impact of an integer frequency offset of one position.
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Figure 7.5: SBLER vs Eb/N0 for integer frequency offset.

All the six sequences are shifted by one position upward and cyclically returned to the bottom by the
aliasing effect. The groups positions do not change, leading to a switch of group for all sequences. The
ones in Orange group moves to the Green group; the ones in the Green group moves to the Blue group;
and the Blue group to the Orange group. Now, we can notice that the sequences that have migrated
from the Orange group to the Green group, i.e. the aliased ones, have also both circularly shifted
by one position. Hence, for each additional sub-carrier frequency offset, the sequences continues to
move from group to group, and the aliased ones also circularly shift from one position. The Figure
7.8 presents the sequences state after a shift of two sub-carriers.

Consequently, at the receiver, the sequences in each group had the same position in the OFDM
spectrum at the transmission and are subject to the same number of circularly shifts. Hence, the
shifted demodulation can be independently applied to each group. Nevertheless, the system needs
to include a mechanism to determine the original positions of the sequences as this may impact the
following binary word processing.

7.4 Detection and Synchronization System

7.4.1 System Model

To evaluate the impact of imperfect time and frequency synchronizations on a CCSK OFDM commu-
nications scheme, we assume the following basic system:

• Each OFDM symbol carries a single CCSK sequence, represented by a ZC sequence of length
N = 64. The CCSK scheme A is used as a basis for the CCSK OFDM transmission. A CP of
length 10 is added to each OFDM symbol.

• The frame is 20 symbols long, with Q = 20. The frame is composed of (N + 10) ∗ Q = 1480
samples at symbol rate.
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Figure 7.6: Group mapping for CCSK sequences.

Figure 7.7: Impact of a frequency offset of one sub-carrier.

• The channel is a complex AWGN. No fading channel is considered to avoid side effects as ISI
and focus the performance analysis on the features previously presented.

• The simulation uses an oversampling of 4, and the oversampled frame length is 5920 samples.

• The frame needs to be first detected. The data frame of Q OFDM symbols is placed between
two blocks of zeros (noise), each also of length 5920 samples.

The Figure 7.9 provides a global overview of the simulated frame. Once the receiver has selected
a sample as the frame start, it selects the following 5920 samples and downsamples them at symbol
rate to obtain the final 1480 samples. Removing the CP leads to a total of 1280 samples. Then,
the receiver individually applies a DFT to each OFDM symbol and use the CCSK cross-correlation
for the demodulation operation. Since the channel is an AWGN, no MRC equalization is used, but
the absolute value of the correlation score should be taken as a mis-synchronization in time or a in
(fractional) frequency can lead to a shifted complex result.
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Figure 7.8: Impact of a frequency offset of two sub-carriers.

Figure 7.9: System model for frame detection and synchronization.

7.4.2 Shifted Demodulation with a CRC

The shifted demodulation relies on the ability of the system to detect the right shift offset, between
the transmitted frame and the demodulated frame. As explained in section 6.5.3, this can be done
with a CRC, checking the integrity of the frame for each possible shift offset.

To test this method, we consider the previously described system, with a perfect time synchro-
nization and a perfect fractional frequency offset synchronization. Considering a frequency offset
f0 ∈ [−2.5∆f , 2.5∆f ], the resulting spectrum can be shifted by ±2, ±1 or 0 sub-carriers, leading to a
possible common shift offset for the frame.

We add a CRC of size 24 bits at the end of the frame. Hence, the last 4 CCSK sequences out of
20 are dedicated to the CRC. The Figure 7.10 compares the SBLER and the BLER performances of
the system. We check the CRC for all possible shift of the frame. When a possibly correct frame is
identified, it is compared to the transmitted one. As false positive can happen, the BLER is always
higher than the SBLER. But as described here, the two curves are close, proving the possibility to
use a CRC for that matter.

Several remarks can be made. First, the size of the CRC has a direct impact on the false positive
rate. If the CRC is too small, a high number of false positives can be detected, greatly decreasing the
advantage of the shifted demodulation. More studies need to be done on the right CRC choice for this
type of system, as the CRC was not designed for this kind of usage. Lastly, it could be interesting to
look for an innovative way to check for the frame integrity. As the shifted demodulation is not usually
consider in communications systems, there is a need for a dedicated design, which could improve the
efficiency of the integrity check.
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Figure 7.10: Comparison of SBLER and actual BLER with a CRC of size 24 bits.

7.4.3 CP-Based Algorithm

The state of the art provides an algorithm based on the CP to get a coarse time-synchronization of
the frame and of the fractional frequency offset [31] [32]. The idea is to use the natural repetition of
the CP in each OFDM symbol. Noting r[k] the kth processed sample and o the oversampling rate, we
define the quantities:

γ[n] =
(n+N−1)o∑

k=n
r[k]r ∗ [k + oN]

φ[n] = 1
2

(n+N−1)o∑
k=n

|r[k]|2 + |r[k + oN]|2

ρ = |E{r[k]r∗[k + oN]}|√
E{|r[k]|2}E{|r[k + oN]|2}

(7.5)

The joint maximum likelihood estimation of the frame starting sample and the fractional frequency
offset are expressed as:

nML = argmax
n

(|γ[n]| − ρφ[n])

fML = − 1
2π∠γ[nML] (7.6)

with ∠ the angle operator. To adapt the algorithm to the case of sporadic OFDM frame surrounded
by noise, and using the multiple CP in the frame, we modify the previous equations leading to:

nML = argmax
n

∣∣∣∣∣∣ 1
Q

Q−1∑
k=0

γ[n+ kQ]

∣∣∣∣∣∣
fML = − 1

2π∠

 1
Q

Q−1∑
k=0

γ[nML + kQ]

 (7.7)
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Figures 7.11, 7.12 and 7.13 respectively describe the performances of the CP-based algorithm in
terms of SBLER, mean time synchronization error and mean fractional frequency estimation error.
From the results we can conclude that, in our system, the CP-based algorithm quickly provides an
accurate time synchronization, but the remaining fractional frequency offset has a major impact on
the SBLER performances. In Figure 7.13, at around 4 dB of Eb/N0, the fractional frequency offset
error starts to mainly decrease because of the noise, the algorithm providing an accurate starting point
of the frame.

Figure 7.11: SBLER vs Eb/N0.

7.5 Conclusion on Time and Frequency Synchronizations

In this section, we have studied the impact of time and frequency synchronization on a typical CCSK
OFDM system. We have showed the importance of the shifted demodulation in these cases, as this
transmission scheme can relax the accuracy of time synchronization and integer frequency synchro-
nization, even with the iterative mapping. The CP-based algorithm represents a good start, providing
a coarse time synchronization and a coarse estimate of the fractional frequency offset, but the inher-
ent CCSK sequences have a high potential for detection and synchronization purpose. Further study
should be done to describe an algorithm using these sequences. The Deliverables 2.2 and 2.3 should
give good leads.
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Figure 7.12: Mean time synchronization error in samples.

Figure 7.13: Mean fractional frequency estimation error.
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8 General Conclusion

The QCSP project proposes the CCSK modulation as a solution to a common difficulty with small
data packet: the overhead of the pilots needed for detection, time and frequency synchronization, and
channel estimation. This document looks at this solution in the scope of a 3GPP framework, and
study the association of the CCSK and the (CP-)OFDM modulation. To maintain the objective of
a lower pilot overhead, this work has proposed innovative solutions to enable all the aforementioned
tasks without the need of pilot sequences.

The study realized in this document mainly keeps an experimental approach, and further analytical
studies are needed to complete the simulation results presented here. Moreover, interesting proposals
where made, especially the DFTLink and GLAD algorithms, that need to be more investigated to
really evaluate the potential of these technical solutions.

Finally, by showing the usage of the shifted demodulation in case of time and frequency synchro-
nizations errors, and demonstrating its feasibility by testing this principle with a CRC check, the
CCSK CP-OFDM represents a promising end to end small packets communications scheme.

Page 94 of (98) ©QCSP, September 2023



D2.5b: Study of CCSK-OFDM

Appendix

A.1 Mathematical tools and demonstrations

This appendix contains useful mathematical tools and demonstrations that are used to derive some
equations in this paper.

A.1.1 Convolution Property of Fourier Transform

We consider two N-periodic sequences gN and hN. Their circular or cyclic convolution is defined as:

(gN ~ hN)[t] =
N−1∑
τ=0

gN[τ ]hN[t− τ ] (A.1)

With ~ is the circular convolution operator. The circular convolution is a N-periodic function. If
the original sequences g and h are actually finite N length sequence, their circular convolution uses a
periodic extension of the sequences.

The DFT of the circular convolution of these sequences is equal to:

F(gN ~ hN)[k] = 1√
N

N−1∑
n=0

(gN ~ hN)[n] exp
(
−j2πnkN

)

= 1√
N

N−1∑
n=0

N−1∑
τ=0

gN[τ ]hN[n− τ ] exp
(
−j2πnkN

)

= 1√
N

N−1∑
τ=0

gN[τ ] exp
(
−j2πτkN

)N−1∑
n=0

hN[n− τ ] exp
(
−j2π (n− τ)k

N

)
=
√

NF(gN)[k]F(hN)[k] (A.2)

The last equality comes from the fact that hN is a N-periodic sequence, as well as the complex
exponential. So the DFT of a circular convolution is equal to the Hadamard product of the DFT
of the sequences. Hence, the Hadamard product of two DFT is equal to the DFT of the circular
convolution of the sequences. The normalization factor has to be taken into account when doing
actual computations, as it may influence the final result.

A.1.2 Fourier Transform of Gate Function

The gate function G(t) is defined as:

G(t) =
{

1 , 0 ≤ t < τ
0 , elsewhere (A.3)

The Fourier transform of the Gate function is computed as:

F(G)(f) =
∫ ∞
−∞

G(t) exp (j2πft)dt

=
∫ τ

0
exp (j2πft)dt

= exp (jπfτ)exp (jπfτ)− exp (−jπfτ)
j2πf

= τ exp (jπfτ) sinc (πfτ) (A.4)

This function is null whenever f = k
τ , k ∈ Z∗, hence at the multiple of the frequency 1

τ .
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A.1.3 Multi-Carrier Modulation and OFDM

We use a MCM that splits the overall bandwidth B into N sub-carriers. The sub-carrier spacing is
equal to ∆f = B

N . The duration of the MCM symbol corresponds to the time needed to transmit one
sub-carrier symbol Tu = 1

∆f . During Tu, the N sub-carriers symbols are transmitted in parallel in
frequency.

On each sub-carrier is mapped a symbol from a standard constellation (e.g. M-QAM). The sub-
carrier n carries the symbol an for 0 ≤ n ≤ N− 1. The transmitted symbol s(t) is defined as the sum
of the sub-carrier signals:

s(t) = <
[

1√
N

N−1∑
n=0

anGTu(t) exp (j2π(f0 + n∆f)t)
]

(A.5)

with Gτ (t) the gate function on the interval [0; τ [ and f0 the frequency of the first sub-carrier.
The gating over the period Tu means that the signal spectrum is a sum of sinc having their zeros at
k

∆f . Hence the sub-carriers signals do not interfere with the of each other. We can use the central
frequency fc = f0 + N

2 ∆f . The sub-carriers are centered around fc, so that in baseband, the system
spectrum is centered around the Direct Component (DC).

s(t) = <
[

1√
N

exp (j2πfct)
N−1∑
n=0

anGTu(t) exp
(
j2π

(
n− N

2

)
∆ft

)]
(A.6)

Based on the spectrum occupied by s(t) in baseband
[
−B

2 ,
B
2

]
, it can be sampled and recovered at

a frequency of B = N∆f . The sampling instant of s(t) are expressed as k
N∆f for 0 ≤ k < 1

∆f = Tu:

s

(
k

N∆f

)
= <

[
1√
N

exp
(
j2πfc

k

N∆f

)N−1∑
n=0

an exp
(
j2π

(
n− N

2

)
k

N

)]

= <
[
exp

(
j2πfc

k

N∆f

)
exp (−jπk) 1√

N

N−1∑
n=0

an exp
(
j2πnkN

)]
(A.7)

The last equation describes the samples of the transmitted signal, as the real part of its complex
envelop. The first term describes the central frequency modulation. The normalized sum corresponds
to the IDFT of the an sequence. The exponential exp (−jπk) = (−1)k enables the spectrum to be
centered around DC in baseband. Without the last simplification, one can see the sum as an IDFT
with sub-carriers mapping shifted by −N

2 :

N−1∑
n=0

an exp
(
j2π

(
n− N

2

)
k

N

)
=

N
2 −1∑

u=−N
2

au+ N
2

exp
(
j2πukN

)

=
N−1∑
u=0

au+ N
2

exp
(
j2πukN

)
(A.8)

The last equality stands because we extended the sequence an as N-periodic. Consequently, sub-
carrier index 0 is mapped to aN

2
, sub-carrier index N

2 − 1 to aN−1, sub-carrier index N
2 to a0 and

sub-carrier index N − 1 to aN
2 −1. The sub-carrier index from N

2 corresponds to negative frequencies.
Using the IDFT and DFT operations for MCM corresponds to the OFDM modulation.
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