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Abstract
This deliverable presents a simplified version of the Successive Cancellation (SC) decoder for Non-
Binary Polar (NB-Polar) codes. The proposed decoder, named Successive Cancellation Min-Sum
(SC-MS), is exclusively formulated in the Log-Likelihood Ratio (LLR) domain to reduce the decoding
complexity of the SC decoder. The NB-Polar codes are associated with Cyclic Code-Shift Keying
(CCSK) modulation to obtain a new coded modulation scheme for ultra-low signal-to-noise ratios
(SNRs). A version that reduces the complexity of the SC-MS decoder is also presented. The quantized
version of the SC-MS decoder is investigated using quantized LLRs on optimized size of bits. This
deliverable also reports on the comparison of NB-Polar, NB-LDPC, and NB-Turbo decoders in terms
of frame error rate (FER) performance.
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Executive Summary

Work Package 1 (WP1: NB codes) of the QCSP project targets the design and the optimiza-
tion of low coding rate CCSK-NB-codes. Three families of NB codes will be investigated: NB-Turbo
code (by Lab-STICC/IMTA), NB-Polar code (by CEA and ETIS) and NB-LDPC code (by building
upon the previous work of Lab-STICC/UBS, CEA).

The goal of Task 1.3 (ETIS): Decoding algorithms, performance and complexity consid-
erations [M9-M21] is to investigate, strengthen, and compare different solutions to decode low-rate
NB codes. On the one hand, non–simplified decoding algorithms for NB-Turbo and NB-LDPC codes
have been intensively investigated in the literature. However, for very low coding rates, only little is
known about their performance/complexity trade-off. Thus, extra optimizations may be required –
especially for low-complexity algorithms – in order to fully exploit the correction capability of the code.
On the other hand, decoding algorithms for NB-Polar codes have practically not been investigated
in the literature (except for the standard SC decoding approach). We aim at investigating different
solutions for decoding NB-Polar codes, including SC decoding with min-sum or min-max approxi-
mations [1], or the generalization to the NB case of more powerful SC-List and D-SC-Flip decoding
algorithms [2]. Decoding algorithms should be compared in terms of both error correction perfor-
mance and computational complexity. Hardware efficiency/architectural considerations will also be
taken into account, to enable the transfer of the proposed solutions to WP3. Deliverable 1.3: Report
(Public) M21

Figure 1: Gantt diagram of WP1

This deliverable is organized as follows:

Section 1 presents an introduction to Non-Binary Polar (NB-Polar) codes.

Section 2 presents NB-Polar codes and the CCSK modulation.

Section 3 describes the Log-Likelihood Ratio (LLR) calculation of the association between the Cyclic
Code-Shift Keying (CCSK) modulation and the NB-Polar code, this section also proposes the Succes-
sive Cancellation Min-Sum (SC-MS) decoder and a version that reduces the complexity of the SC-MS
decoder.

Section 4 presents the finite precision SC-MS decoder.

Section 5 presents the comparison of NB-Polar, NB-LDPC, and NB-Turbo decoders in terms of frame
error rate (FER) performance.
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1 Introduction

Binary Polar codes [3], introduced by Arikan in 2008, are the first provable capacity-achieving
error correction codes for binary-input discrete memoryless channels with low encoding and decoding
complexity. Binary polar codes have been adopted for the Enhanced Mobile Broadband (eMBB)
control channel of 5G New Radio (NR).

In the current decade, more than 50 billion devices will be connected thanks to the Internet of
Things (IoT) [4]. The new generation of mobile networks, notably the 5G system, will need to support
short packet traffic [5,6]. At the link level, we can take advantage of powerful error control codes such
as Non-Binary Polar (NB-Polar) codes to transmit short packets.

NB-Polar codes [7–11] of length N = 2n, also known as q-ary polar codes, are powerful Forward
Error Correction (FEC) codes defined over the Galois Field (GF) Fq, q > 2. A NB-Polar code
processes multiple bits in parallel and helps reduce the probability of frame error compared to binary
polar codes.

The Cyclic Code-Shift Keying (CCSK) modulation [12] is a q-ary direct-sequence spread-spectrum
(DSSS) technique that improves the spectral efficiency of spread-spectrum systems. The CCSK mod-
ulation can provide self-synchronization and identification capabilities. All CCSK sequences are ob-
tained from a unique pseudo-random noise (PN) sequence that is circularly shifted. In [13], the
authors propose the association of NB-LDPC codes and CCSK to prevent the information loss when
calculating channel probabilities at the symbol level.

In this report, we associate the CCSK modulation to NB-Polar codes to obtain a new coded
modulation scheme that can be used in low power networks requiring long range connectivity and
high sensitivity, e.g. Low-Power Wide-Area (LPWA) networks for IoT applications. We examine the
Successive Cancellation (SC) decoder for NB-Polar codes operating in the probability domain. The
association of CCSK and NB-Polar codes enables the SC decoder to have good decoding performance
at ultra-low signal-to-noise ratios (SNRs).

In order to reduce the complexity of the SC decoder, we propose a decoder named Successive
Cancellation Min-Sum (SC-MS) decoder that is exclusively formulated in the Log-Likelihood Ratio
(LLR) domain. To further reduce the complexity of the SC-MS decoder, we simplify the kernel
transformation for construction of the NB-Polar codes. The simplified kernel also helps reduce the
complexity of the NB-Polar encoder.

We investigate SC-MS decoders defined over small alphabets constructed from Qm ∈ {2, 3, 4, 5} bits
of precision for the internal LLRs. We also quantize the channel LLRs on small alphabets constructed
from Qch ∈ {2, 3, 4, 5} bits of precision.

Our numerical results show that the SC-MS decoder presents a negligible performance degradation
with respect to the SC decoder for code length N ∈ {64, 128, 256, 512, 1024}. In the case of code length
N = 2048, the SC-MS decoder suffers a very small performance loss compared to the SC decoder,
the degradation at FER = 10−2 is around 0.1 dB for F28 . Comparing quantized SC-MS decoders,
we observe that the (Qch = 3, Qm = 4)-bit SC-MS can achieve almost the same performance as the
(Qch = 5, Qm = 5)-bit SC-MS. We also observe that the (Qch = 2, Qm = 3)-bit SC-MS decoder offers
a good trade-off between performance and complexity.

When comparing the performance of the SC-MS decoder with the NB-LDPC and NB-Turbo de-
coders, we observe that the NB-Turbo decoder has the best performance for the different simulated
codes. Comparing the SC-MS and NB-LDPC decoders, both decoders have almost the same FER
performance, in some cases the SC-MS decoder has better performance and in others the NB-LDPC
decoder has better performance.

©QCSP, December 2021 Page 5 of (23)
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2 NB-Polar Codes and CCSK Modulation

2.1 Non-Binary Polar Codes

In this report, a NB-Polar code of length N = 2n is defined over the Galois Field Fq, with q = 2p and
where p > 1. Let x = (x0, ..., xN−1), xi ∈ Fq for i = 0, ..., N − 1, be the codeword that is obtained
after encoding the message u = (u0, ..., uN−1), ui ∈ Fq for i = 0, ..., N − 1. Also, let F∗

q denote the
set of all non-zero elements of Fq. It is worth mentioning that a GF element can be represented by a
binary vector of size p, e.g. x1 = (x0

1, ..., xp−1
1 ). For the construction of NB-Polar codes, we consider

the kernel transformation T : (x0, x1) = (u0 ⊕ u1, h ⊙ u1), with ’⊕’ and ’⊙’ respectively denoting the
addition and multiplication rules over Fq, and where h ∈ F∗

q is a randomly chosen element. It has been
shown in [7] that the transformation T guarantees polarization of the NB-Polar codes if q is a prime
power. A NB-Polar code of length N = 2n is obtained by applying T recursively (n times), and in
each step of the recursion different values of h can be used. In the decoding process, T is composed of
a check node (CN) and a variable node (VN), hence a NB-Polar code of N = 2n has n(N/2) VNs/CNs.
The update rule for a VN/CN is presented in section 3. Fig. 2.1 shows a graph of a NB-Polar code of
N = 23 and composed of 12 VNs

(
represented with =

)
and 12 CNs

(
represented with ⊕ )

.
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Figure 2.1: Graph of a NB-Polar code of length N = 8.

A (N, K) NB-Polar code has K information symbols, a total length of N = 2n, N − K frozen
symbols, and code rate Rc = K/N . Thus a codeword is composed of K × p bits of information. Let
I = {i0, ..., iK−1} denote the set of indices 0 ≤ iK ≤ N − 1 that serves to indicate the positions of the
information symbols, and let Ic denote the set of all elements in the set {0, ..., N − 1} that are not
in I. We use a genie-aided successive cancellation decoder [3] to compute the sets I and Ic at each
SNR value. In this report, the frozen symbols uIc = {ui, i ∈ Ic} are set to zero and their positions
are known to both encoder and decoder. Note that u = (uI , uIc), where uI = {ui, i ∈ I} are the
information symbols.

2.2 Cyclic Code-Shift Keying Modulation

The CCSK modulation is a technique that associates pseudo-random noise (PN) sequences of length
q = 2p to p-bit symbols. Each sequence is derived from a unique PN sequence η0 = (η0(0), ..., η0(q−1))
of length q, where η0(k) ∈ {0, 1} for k = 0, ..., q − 1. We perform the circular shift to the left of η0 in
s ∈ {0, ..., q−1} positions to obtain the PN sequence ηs = (ηs(0), ..., ηs(q−1)), where ηs(k) = η0((k+s)
mod q) for k = 0, ..., q − 1. The rate of the modulation is Rm = p/q.

PN sequences can be constructed using a Linear Feedback Shift Register (LFSR). The PN sequence
generated by an LFSR has good autocorrelation properties. Algorithms like the genetic algorithm can
also be used to generate and optimize a PN sequence.

Page 6 of (23) ©QCSP, December 2021
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3 Successive Cancellation Based Decoders

In this section, we present the association of CCSK modulation to NB-Polar codes. We also propose
a simplified version of the SC decoder. Taking advantage of the recursive structure, the decoder for
the NB-Polar code proceeds in n + 1 stages ℓ ∈ {0, ...n}, see Fig 2.1. From this section onwards, we
distinguish between two types of LLRs, the channel LLRs calculated at stage ℓ = 0 and the internal
LLRs obtained at stage ℓ ∈ {1, ..., n}.

3.1 Definition of the Log-Likelihood Ratio

Let η0 = (η0(0), ..., η0(q − 1)) denote a fundamental PN sequence, and let η = (ηx0 , ..., ηxN−1) denote
the codeword after applying the CCSK technique to x = (x0, ..., xN−1). Each symbol xi ∈ Fq,
i = 0, ..., N − 1, of x is mapped to the PN sequence ηxi = (ηxi(0), ..., ηxi(q − 1)), where ηxi(k) =
η0((k +xi) mod q) for k = 0, ..., q −1, with ηxi(k) ∈ {0, 1}. The code rate after the CCSK modulation
is Re = Rc × Rm = (K × p)/(N × q). We consider that η is modulated by the Binary Phase-
Shift Keying (BPSK) modulation and transmitted over the Binary Input Additive White Gaussian
Noise (BI-AWGN) channel with noise variance σ2. The channel output y = (y0, ..., yN−1), with
yi = (yi(0), ..., yi(q−1)) for i = 0, ..., N −1, is modeled by yi(k) = (1−2ηxi(k))+zi(k), k = 0, . . . , q−1,
where zi(k) is a sequence of independent and identically distributed (i.i.d.) Gaussian random variables
with zero mean and variance σ2.

We can define the vector of channel LLRs Li = (Li(0), ..., Li(q − 1)) of a GF symbol xi as

Li(xi) = log
(Pr(yi | η̂xi)

Pr(yi | ηxi)

)
∀xi ∈ Fq, (3.1)

where η̂xi is the hard decision over yi, i.e. η̂xi(k) = 1 if yi(k) < 0, η̂xi(k) = 0 otherwise, k = 0, . . . , q−1.
Equation (3.1) can be expressed as:

Li(xi) =
q−1∑
k=0

log (Pr(yi(k) | η̂xi(k))) − log (Pr(yi(k) | ηxi(k))) ∀xi ∈ Fq. (3.2)

Replacing the conditional distribution for the BI-AWGN channel Pr(y | x) = 1√
2πσ

e−(y−x)2/2σ2 , we
obtain

Li(xi) =
q−1∑
k=0

2yi(k)
σ2 (ηxi(k) − η̂xi(k)) ∀xi ∈ Fq. (3.3)

The vector of channel LLRs computed with (3.3) allows us to obtain only positive LLR values. To
set at least one element of Li equal to zero, we use

L′
i(xi) = Li(xi) − min(Li) ∀xi ∈ Fq. (3.4)

From the LLR values, the probability distribution Pi(xi) = Pr(yi | xi) can be computed by:

Pi(xi) = e−Li(xi)∑
x′

i∈Fq

e−Li(x′
i)

∀xi ∈ Fq. (3.5)

3.2 Successive Cancellation Decoder

The SC decoder, defined in the probability domain [14], estimates the information symbols one by
one. Note that each estimated symbol is used to decode the next symbol.

©QCSP, December 2021 Page 7 of (23)
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Let P ℓ = (P ℓ
0 , ..., P ℓ

N−1) denote the probability distribution computed at stage ℓ ∈ {0, ..., n} during
the decoding process, where P ℓ

i = (P ℓ
i (0), ..., P ℓ

i (q − 1)), i = 0, ..., N − 1, denotes the probability
distribution of the intermediate values uℓ

i , and let ûℓ
i denote the estimated symbol of uℓ

i . We note
that u0

i = xi. At the initialization stage of the SC decoder (ℓ = 0), P 0
i is initialized with (3.5), i.e.

P 0
i = Pi(xi) for i = 0, ..., N − 1.

Let us consider the transformation

T :
(

uℓ−1
θℓ−1

t

, uℓ−1
ϕℓ−1

t

)
=

(
uℓ

θℓ−1
t

⊕ uℓ
ϕℓ−1

t
, hℓ−1

ϕℓ−1
t

⊙ uℓ
ϕℓ−1

t

)
, (3.6)

where θℓ−1
t and ϕℓ−1

t are given by

θℓ−1
t = 2t − (t mod 2ℓ−1),

ϕℓ−1
t = 2ℓ−1 + 2t − (t mod 2ℓ−1),

for t = 0, 1, ..., N/2 − 1.
To simplify the notations, we use θ (respectively ϕ) to denote θℓ−1

t (respectively ϕℓ−1
t ). Similarly,

h is used to denote hℓ−1
ϕℓ−1

t

for simplicity.
The update rules considering T are shown in Fig. 3.1.

P `θ P `−1
θ

P `−1
φ

=

+

h

(a) Check node.

û`θ P `−1
θ

P `φ P `−1
φ

=

+

h

(b) Variable node.

û`θ û`−1
θ

û`φ û`−1
φ

=

+

h

(c) Propagation of û.

Figure 3.1: Update rules for the SC decoder.

The update rule at a CN is given by

P ℓ
θ (uℓ

θ) = β
∑

uℓ
ϕ

∈Fq

P ℓ−1
θ (uℓ

θ ⊕ uℓ
ϕ)P ℓ−1

ϕ (h ⊙ uℓ
ϕ) ∀uℓ

θ ∈ Fq, (3.7)

where β−1 = ∑
uℓ

θ
∈Fq

P ℓ
θ

(
uℓ

θ

)
, i.e. β is a normalization factor.

The update rule at a VN is defined as

P ℓ
ϕ

(
uℓ

ϕ

)
= δP ℓ−1

θ

(
ûℓ

θ ⊕ uℓ
ϕ

)
P ℓ−1

ϕ

(
h ⊙ uℓ

ϕ

)
, (3.8)

where δ−1 = ∑
uℓ

ϕ
∈Fq

P ℓ
ϕ

(
uℓ

ϕ

)
.

To propagate the estimated symbols, we use(
ûℓ−1

θ , ûℓ−1
ϕ

)
=

(
ûℓ

θ ⊕ ûℓ
ϕ, h ⊙ ûℓ

ϕ

)
. (3.9)

We can estimate a message û = (ûn
0 , ..., ûn

N−1) of length N = 2n by applying (3.7), (3.8), and (3.9)
at each decoding stage ℓ. At stage ℓ = n, the hard decision of un

i is obtained as

ûn
i =

 0, if i ∈ Ic

arg max
un

i

P n
i (un

i ), if i ∈ I. (3.10)

3.3 Successive Cancellation Min-Sum Decoder

We propose a simplified version of the SC decoder named Successive-Cancellation Min-Sum (SC-MS)
decoder that is exclusively formulated in the LLR domain.
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3.3.1 Update Rules of SC-MS Decoders

Let Lℓ = (Lℓ
0, ..., Lℓ

N−1) denote the LLRs computed at stage ℓ ∈ {0, ..., n} during the decoding process,
and let Lℓ

i = (Lℓ
i(0), ..., Lℓ

i(q − 1)), i = 0, ..., N − 1, denote the LLR of uℓ
i . The SC-MS decoder is

initialized using (3.4), i.e. we have L0
i = L′

i(xi) for i = 0, ..., N − 1. With these notations and
considering T of (3.6), the update rule at a CN is given by

Lℓ
θ(uℓ

θ) = min
uℓ

ϕ
∈Fq

(
Lℓ−1

θ (uℓ
θ ⊕ uℓ

ϕ) + Lℓ−1
ϕ (h ⊙ uℓ

ϕ)
)

∀uℓ
θ ∈ Fq. (3.11)

The update rule at a VN is defined as

L′
ϕ

(
uℓ

ϕ

)
= Lℓ−1

θ

(
ûℓ

θ ⊕ uℓ
ϕ

)
+ Lℓ−1

ϕ

(
h ⊙ uℓ

ϕ

)
. (3.12)

Lℓ
ϕ

(
uℓ

ϕ

)
= L′

ϕ

(
uℓ

ϕ

)
− min

(
L′

ϕ

)
. (3.13)

Equation (3.13) is necessary for numerical reasons to ensure the nondivergence of the SC-MS decoder.
In the decoding process without the use of (3.13), the internal LLRs converge to very large numerical
values that are computationally intractable.

We can estimate û = (ûn
0 , ..., ûn

N−1) by applying (3.11), (3.12), (3.13), and (3.9), where the hard
decision of un

i is obtained as

ûn
i =

 0, if i ∈ Ic

arg min
un

i

Ln
i (un

i ), if i ∈ I. (3.14)

3.3.2 Performance of SC-MS Decoders

In this section, we present the frame error rate (FER) performance of SC-based decoders over the
BI-AWGN channel for various NB-Polar codes and two high-order GFs.

A genie-aided SC decoder is used to compute the set I. Additionally, the set of symbol positions
IMS is obtained using a genie-aided SC-MS decoder. The sets I and IMS are calculated at each value
of SNR; the results show that the two sets are not equal although they may have many elements in
common.

We consider four cases for the Monte Carlo simulations: (i) (K = 20,F26), (ii) (K = 160,F26),
(iii) (K = 30,F28), and (iv) (K = 240,F28). Also, we consider N ∈ {64, 128, 256} for K ∈ {20, 30},
and N ∈ {512, 1024, 2048} for K ∈ {160, 240}. For all NB-Polar codes, the SC decoder performance
is shown as a benchmark.

Fig. 3.2 shows the FER performance comparison between the SC and SC-MS using I and IMS ,
for six code lengths N ∈ {64, 128, 256, 512, 1024, 2048} and for the GF F26 . The results obtained
show that the SC-MS decoders present a negligible performance degradation with respect to the SC
decoders when the code length is N ∈ {64, 128, 256}.

Simulation results for the code length N ∈ {64, 128, 256, 512, 1024, 2048} and the field F28 are
provided in Fig. 3.3, we can see a negligible performance loss for SC-MS decoders when the code length
is N ∈ {64, 128, 256}. We can observe at FER = 10−2 a very small performance loss of about 0.1 dB
for (N = 2048, K = 240), 0.08 dB for (N = 1024, K = 240), and 0.05 dB for (N = 512, K = 240).
Similar behavior is observed for K = 160, F26 , and N ∈ {512, 1024, 2048}.

When comparing the FER performance of the SC-MS decoders using the sets I and IMS , the SC-
MS decoders implemented with I have (almost) the same decoding performance as SC-MS decoders
implemented with IMS .

3.4 Low-complexity decoding for NB-Polar codes

In this section, we optimize the SC-MS decoder to reduce its complexity.
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Figure 3.2: FER performance of SC-based decoders for N ∈ {64, 128, 256, 512, 1024, 2048} over F26 .
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Figure 3.3: FER performance of SC-based decoders for N ∈ {64, 128, 256, 512, 1024, 2048} over F28 .
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3.4.1 Optimized Encoding of NB-Polar Codes

In section 2, we considered the kernel transformation T : (x0, x1) = (u0⊕u1, h⊙u1) for the construction
of NB-Polar codes, where h ∈ F∗

q is a randomly chosen element. A NB-Polar code of length N = 2n is
obtained by applying T recursively (n times). Once the construction of a NB-Polar of length N = 2n

code is finished, we obtain n layers of coefficients h. For example, Fig. 2.1 shows a graph of a NB-Polar
code of N = 23, we can see three layers of coefficients h.

Let dℓ denote the configuration where the first ℓ layers of h are equal to 1. Then, we obtain that d0
corresponds to all the coefficients h different from 1, and also that dn corresponds to all the coefficients
h equal to 1. Let us take the example of N = 23. Figure 3.4 shows all the possible configurations for
dℓ, we can observe that for configuration d3 all coefficients are equal to 1.

h2
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1
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h1
1

h1
0 h0
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1
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1

1
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1 1
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Figure 3.4: All the possible configurations of dℓ.
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Figure 3.5: FER performance of SC decoders for (N = 64, K = 20) and for dℓ ∈ {d0, ..., d6} over F26 .

For the optimization process of dℓ, we use the SC decoder, we also take into account the association
of CCSK modulation and NB-Polar codes. For the good choice of dℓ, we compare the FER performance
results of the SC decoder by varying dℓ, and we choose the configuration dℓ that does not degrade the
FER performance of the SC decoder.

Figure 3.5 represents the FER performance of the SC decoder for (N = 64, K = 20) and for
dℓ ∈ {d0, d1, d2, d3, d4, d5, d6} over F26 . We can clearly see that the FER performance of the SC
decoder is the same for any configuration dℓ, hence the best choice for dℓ is dℓ = d6 = dn, that is, we
can put the value of 1 to all the coefficients.

Figure 3.6 and Figure 3.7 present the FER performance results for dℓ = d0 and dℓ = dn considering
different codes lengths N = 2n, different code rates R = K/N , and different fields Fq. The simulation
results again show that dℓ = dn is the best choice.
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(a) R = 15/32 and F27 .
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(b) R = 15/64 and F28 .
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Figure 3.6: FER performance of SC decoders for dℓ ∈ {d0, d6} over F27 and F28 .
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Additional simulation results are presented in Figure 3.7 for (N = 64, K = 20) and for dℓ ∈ {d0, dn}
over Fq ∈ {F26 ,F27 ,F28 ,F29}, once again we can see that dℓ = dn is the best choice.
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Figure 3.7: FER performance of SC decoders for K ∈ {20, 60} and for dℓ ∈ {d0, d6} over F26 .
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Figure 3.8: FER performance of SC decoders for (N = 64, K = 20) and for dℓ ∈ {d0, dn} over
Fq ∈ {F26 ,F27 ,F28 ,F29}.

From all the results obtained, we can conclude that all the coefficients h can be equal to 1 and
therefore it is not necessary to use random coefficients. Setting all the coefficients equal to 1 implies a
100% reduction in the use of a memory to store the coefficients. Also, in the process of construction
of NB-Polar codes, the multiplication ’⊙’ is no longer necessary, hence the kernel transformation
T : (x0, x1) = (u0 ⊕ u1, h ⊙ u1) becomes TO : (x0, x1) = (u0 ⊕ u1, u1). Using the kernel transformation
TO implies only using XOR logic gates for encoding the NB-Polar codes.

Note that the transformation given in equation 3.6 becomes:

TO :
(

uℓ−1
θℓ−1

t

, uℓ−1
ϕℓ−1

t

)
=

(
uℓ

θℓ−1
t

⊕ uℓ
ϕℓ−1

t
, uℓ

ϕℓ−1
t

)
. (3.15)

The update rules considering TO are described in Section 3.4.2.

©QCSP, December 2021 Page 13 of (23)



D1.3:Decoding algorithms, performance and complexity considerations

3.4.2 Optimized Decoding of NB-Polar Codes

In this section, we present the update rules used to reduce decoding complexity of SC-MS decoders.
Let no be a natural number such that 0 < no < q, and let Fℓ

no
= {λℓ

0, λℓ
1, ..., λℓ

no−1} be a subset of Fq,
where λℓ

i ∈ Fq for i = 0, ..., no − 1. Also let Lℓ
ϕO

= (Lℓ
ϕO

(λℓ
0), ..., Lℓ

ϕO
(λℓ

no−1)) denote the no smallest
values of the vector Lℓ

ϕ = (Lℓ
ϕ(0), ..., Lℓ

ϕ(q − 1)). With these notations and considering TO of (3.15),
the update rule at a CN is given by

Lℓ
θ(uℓ

θ) = min
λℓ

i∈Fℓ
no

(
Lℓ−1

θ (uℓ
θ ⊕ λℓ

i) + Lℓ−1
ϕO

(λℓ
i)

)
∀uℓ

θ ∈ Fq. (3.16)

One can see that equation 3.16 is less complex than equation 3.11. For a fixed value of uℓ
θ, equation

3.16 performs no < q operations, while equation 3.11 performs q operations. Hence the importance of
choosing a small value of no.

For the case of the VN, the update rule is given by

L′
ϕ

(
uℓ

ϕ

)
= Lℓ−1

θ

(
ûℓ

θ ⊕ uℓ
ϕ

)
+ Lℓ−1

ϕ

(
uℓ

ϕ

)
. (3.17)

Lℓ
ϕ

(
uℓ

ϕ

)
= L′

ϕ

(
uℓ

ϕ

)
− min

(
L′

ϕ

)
. (3.18)

We can estimate û = (ûn
0 , ..., ûn

N−1) by applying (3.16), (3.17), (3.18), and (3.9), where the hard
decision of un

i is obtained as

ûn
i =

 0, if i ∈ Ic

arg min
un

i

Ln
i (un

i ), if i ∈ I. (3.19)

The value of no is optimized using Monte Carlo simulations. To compare the FER performance
of the optimized decoders, the SC decoder performance is shown as a benchmark using no = q and
dℓ = d0. Figure 3.9 shows the FER performance of SC-MS decoders for (N = 64, K = 20) and dℓ = dn

over Fq ∈ {F26 ,F27}. For the case F26 , we can see that no between 16 and 20 is a good choice due to
negligible performance loss. In the case of F27 , no between 30 and 40 is a good choice. Of course, we
always choose the smallest possible value of no.

Simulation results for (N = 64, K = 20) and Fq ∈ {F26 ,F27 ,F28 ,F29} are provided in Figure 3.10.
We can see that the performance losses of the SC-MS decoders are negligible for small values of no

compared to q. From Figure 3.9 and Figure 3.10, we can see that for a fixed code rate, the ratio no/q
decreases as q increases.

Figure 3.11 depicts the FER performance of the SC-MS decoders for N ∈ {64, 128, 256} and
R = 5/16 over F26 . Comparing the decoders, the SC-MS decoders with small values of no can reach
the FER performance of the SC decoders. From these results, we can see that for a fixed code rate
and fixed q, no increases as the length N increases.

3.5 Complexity of SC-based Decoders

We measure decoding complexity by counting the adders, multipliers, and comparators used by the
decoder over the field Fq. In an SC decoder, a CN requires q2 multiplications and q(q − 1) additions;
and a VN requires q multiplications. The normalization process requires q−1 additions and q divisions.
In the case of an SC-MS decoder, a CN requires q2 additions and q(q − 1) comparisons; and a VN
requires q additions, q − 1 comparisons, and q subtractions.

We report in Table 3.1 the complexity of a CN and a VN. Note that the subtractions are considered
as additions and the divisions as multiplications.

When the optimized SC-MS decoder is considered, the complexity of the CN is reduced. In
Table 3.1, we can observe that the number of additions is reduced from q2 to qno and the number of
comparisons is reduced from q(q − 1) to q(no − 1).
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(a) no ∈ {12, 16, 20, 24, 28, 32, 64} and F26 .
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Figure 3.9: FER performance of SC-MS decoders for (N = 64, K = 20) over Fq ∈ {F26 ,F27}.
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Figure 3.10: FER performance of SC-MS decoders for (N = 64, K = 20) over Fq ∈ {F26 ,F27 ,F28 ,F29}.

Table 3.1: Complexity of a single CN and a single VN for Fq.
Decoder Node # of # of # of

multipliers adders comparators

SC CN q2 + q q2 − 1 -
VN 2q q − 1 -

SC-MS CN - q2 q(q − 1)
VN - 2q q − 1

Optimized CN - qno q(no − 1)
SC-MS VN - 2q q − 1
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Figure 3.11: FER performance of SC-MS decoders for N ∈ {64, 128, 256} and R = 5/16 over F26 .
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4 Finite Precision SC-MS Decoders

In this section, we present a finite precision version of the SC-MS decoder for low complexity
hardware implementation.

4.1 Quantization used for SC-MS Decoders

For quantized SC-MS decoders, the LLRs have to be quantized and saturated. Let Qch denote the
number of precision bits of quantized channel LLRs, and let Ach denote the alphabet of channel LLRs
defined as Ach = {0, +1, ..., +Nch}, composed of Nch + 1 states, where Nch = 2Qch − 1.

Let us also denote the quantizer by Q : R → Ach for the quantized SC-MS decoders, defined as

Q (a) = min (⌊α × a⌋ , Nch) , (4.1)

where ⌊.⌋ depicts the floor function. The parameter α is called channel gain factor and is used to
increase or decrease the amplitude of channel LLRs at the decoder input.

After computing L′
i with (3.3) and (3.4), the quantized version Ii = (Ii(0), ..., Ii(q − 1)) of L′

i can
be obtained as

Ii (xi) = Q
(
L′

i(xi)
)

∀xi ∈ Fq. (4.2)

The quantized channel LLR Ii is used to initialize the decoder.
Let us denote by AL the alphabet of the internal LLRs defined as AL = {0, +1, ..., +Nm}, composed

of Nm + 1 states, with Nm = 2Qm − 1 and where Qm is the number of precision bits of quantized
internal LLRs.

4.2 Update Rules

4.2.1 SC-MS Decoders

Let Iℓ = (Iℓ
0, ..., Iℓ

N−1) denote the quantized LLRs computed at stage ℓ ∈ {0, ..., n} during the decoding
process, and let Iℓ

i = (Iℓ
i (0), ..., Iℓ

i (q − 1)), i = 0, ..., N − 1, denote the quantized LLR of uℓ
i . At stage

ℓ = 0, the input of the quantized decoder is obtained with (4.2), i.e. I0
i = Ii(xi) for i = 0, ..., N − 1.

Considering T of (3.6), the update rule at a CN is given by

Iℓ
θ

(
uℓ

θ

)
= min

uℓ
ϕ

∈Fq

(
Iℓ−1

θ

(
uℓ

θ ⊕ uℓ
ϕ

)
+ Iℓ−1

ϕ

(
h ⊙ uℓ

ϕ

))
∀uℓ

θ ∈ Fq. (4.3)

For the case of a VN, the update rule is determined by

I ′
ϕ

(
uℓ

ϕ

)
= Iℓ−1

θ

(
ûℓ

θ ⊕ uℓ
ϕ

)
+ Iℓ−1

ϕ

(
h ⊙ uℓ

ϕ

)
. (4.4)

Iℓ
ϕ

(
uℓ

ϕ

)
= min

(
I ′

ϕ

(
uℓ

ϕ

)
− min

(
I ′

ϕ

)
, Nm

)
. (4.5)

The message û = (ûn
0 , ..., ûn

N−1) can be estimated using (4.3), (4.4), (4.5), and (3.9). The hard decision
un

i is obtained using (3.14), where Ln
i is replaced by In

i for i = 0, ..., N − 1.
The operators used in the quantized SC-MS decoder require Qm + 1 bits of precision. Since it is

easier to implement fixed point operations, the (Qch, Qm)-bit SC-MS decoder reduces computational
complexity. Comparing the (64, 64)-bit SC-MS (floating-point) with the (2, 3)-bit SC-MS, we can
roughly obtain a 93.7% reduction in complexity. Note that we compare the number of bits of the
operators, i.e. 100(1 − (Qm + 1)/64).
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4.2.2 Optimized SC-MS Decoders

Let Iℓ
ϕO

= (Iℓ
ϕO

(λℓ
0), ..., Iℓ

ϕO
(λℓ

no−1)) denote the quantized LLR of Lℓ
ϕO

= (Lℓ
ϕO

(λℓ
0), ..., Lℓ

ϕO
(λℓ

no−1)).
Considering TO of (3.15), the update rule at a CN can be written as

Iℓ
θ

(
uℓ

θ

)
= min

λℓ
i∈Fℓ

no

(
Iℓ−1

θ

(
uℓ

θ ⊕ λℓ
i

)
+ Iℓ−1

ϕO

(
λℓ

i

))
∀uℓ

θ ∈ Fq. (4.6)

For the case of a VN, the update rule is given by

I ′
ϕ

(
uℓ

ϕ

)
= Iℓ−1

θ

(
ûℓ

θ ⊕ uℓ
ϕ

)
+ Iℓ−1

ϕ

(
uℓ

ϕ

)
. (4.7)

Iℓ
ϕ

(
uℓ

ϕ

)
= min

(
I ′

ϕ

(
uℓ

ϕ

)
− min

(
I ′

ϕ

)
, Nm

)
. (4.8)

Then, û = (ûn
0 , ..., ûn

N−1) can be computed using (4.6), (4.7), (4.8), and (3.9).

4.3 Performance of Fixed-Point SC-MS Decoders

In this section, we present the simulation results of finite precision SC decoders over the field F26 . We
focus on the (N = 64, K = 20) NB-Polar code and different bits of precision for channel LLRs and
internal LLRs. All quantized decoders use the set I for the symbol positions.

The channel gain factor α used to quantize the channel LLRs are optimized using Monte Carlo
simulations. In Table 4.1, we indicate the optimal values of α for (Qch, Qm)-bit SC-MS decoders. We
also report in Table 4.1 the SNR losses of the (Qch, Qm)-bit SC-MS decoder with respect to the SC
decoder.

Table 4.1: SNR losses of finite precision SC-MS decoders for the (N = 64, K = 20) NB-Polar code
and for the field F26 .

(Qch, Qm) α∗ SNR loss (dB) (Qch, Qm) α∗ SNR loss (dB)
@ FER = 10−2 @ FER = 10−2

(2, 2) 0.40 1.00 (3, 4) 0.90 0.17
(2, 3) 0.55 0.45 (3, 5) 0.90 0.15
(2, 4) 0.55 0.45 (4, 4) 1.10 0.14
(2, 5) 0.55 0.45 (4, 5) 1.40 0.11
(3, 3) 0.60 0.38 (5, 5) 1.90 0.07

Fig. 4.1 depicts the FER performance of the best quantized SC-MS decoders for low precision
(Qch, Qm). We can see that the (5, 5)-bit SC-MS decoder has the best FER performance, and the
(3, 4)-bit SC-MS decoder can achieve almost the same performance as the (5, 5)-bit SC-MS decoder.

The FER performance curves plotted in Fig. 4.2 shows the performance of the optimized (Qch, Qm)-
bit SC-MS decoders. The SNR losses of the optimized (Qch, Qm)-bit SC-MS decoder with respect to
the SC decoder are listed in Table 4.2.

From all results obtained, the (2, 3)-bit SC-MS decoder is a good option for applications that
require low hardware complexity. In the case where the decoding performance is privileged by the
applications, the (3, 4)-bit SC-MS decoder is a good choice for a hardware implementation.
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(a) FER performance.
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(b) FER performance.

Figure 4.1: FER performance of the (Qch, Qm)-bit SC-MS decoders over F26 , N = 64, and K = 20.

Table 4.2: SNR losses of optimized SC-MS decoders for the (N = 64, K = 20) NB-Polar code, for the
field F26 , and for no = 16.

(Qch, Qm) α∗ SNR loss (dB) (Qch, Qm) α∗ SNR loss (dB)
@ FER = 10−2 @ FER = 10−2

(2, 2) 0.45 1.00 (3, 4) 1.05 0.21
(2, 3) 0.55 0.48 (3, 5) 1.05 0.20
(2, 4) 0.60 0.48 (4, 4) 1.10 0.20
(2, 5) 0.60 0.48 (4, 5) 1.80 0.12
(3, 3) 0.63 0.40 (5, 5) 2.00 0.10
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(b) FER performance.

Figure 4.2: FER performance of the (Qch, Qm)-bit SC-MS decoders over F26 , N = 64, and K = 20.
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5 Performance of Non-Binary Decoders

In this section, we compare the FER performance of the SC-MS decoder (NB-Polar decoder)
with the NB-LDPC and NB-Turbo decoders. We consider the BI-AWGN channel, the GF F26 , and
the code rate R ∈ {1/3, 2/3}. We also consider N ∈ {64, 128, 256} for the NB-Polar codes and
N ∈ {60, 120, 240} for the NB-LDPC and NB-Turbo codes.

The Monte Carlo simulations for NB-Polar, NB-LDPC, and NB-Turbo decoders with CCSK mod-
ulation are presented in Figure 5.1 and Figure 5.2. We can observe that the NB-Turbo decoder has
the best performance.

Comparing the NB-Polar and NB-LDPC decoders, both decoders have almost the same FER
performance. In some cases the NB-Polar decoder has better FER performance as shown in Figure
5.2(c), and in others the NB-LDPC decoder has better performance as seen in Figure 5.1(a).
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(a) K ∈ {20, 21}.
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(b) K ∈ {40, 43}.
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(c) K ∈ {80, 85}.

Figure 5.1: Performance comparison of non-binary codes using code rate R = 1/3 and field F26 .
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(a) K ∈ {40, 42}.
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(b) K ∈ {80, 85}.
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(c) K ∈ {160, 171}.

Figure 5.2: Performance comparison of non-binary codes using code rate R = 2/3 and field F26 .
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6 General Conclusion

In this document, we first have shown that NB-Polar codes associated with CCSK modulation
can achieve very low FER at ultra-low SNR. Moreover, we have proposed a simplified version of the
SC decoder. The SC-MS decoder has been defined in the LLR domain and it reduces the decod-
ing complexity. To further reduce complexity of the SC-MS decoder, we have simplified the kernel
transformation for construction of NB-Polar codes. We have also proposed a quantized version of the
SC-MS decoder.

The Monte Carlo simulations have shown that the SC-MS decoders present a negligible performance
degradation with respect to the SC decoders for code length N ∈ {64, 128, 256, 512, 1024}. In this
study, we have demonstrated that the (2, 3)-bit SC-MS and (3, 4)-bit SC-MS offer a good trade-off
between decoding performance and complexity.

On the other hand, the FER performance of the SC-MS decoder has been compared with the FER
performance of the NB-LDPC and NB-Turbo decoders. We have shown that the NB-Turbo decoder
has the best FER performance, and the SC-MS decoder and the NB-LDPC decoder have almost the
same FER performance.
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